10 resultados para Caxton, William, approximately 1422-1491.
em Aquatic Commons
Resumo:
This workshop was organized because of the increase between 1978 and 1980 in coastwide landings of widow rockfish, from less than 1,000 mt to more than 20,000 mt, and because of scientists' concern with the lack of knowledge both of the fishery and biology of the species. Most scientists active in research on Pacific groundfish, as well as some members of the fishing industry and fishery managers, attended the workshop. These proceedings contain the report of the workshop discussion panel, status reports on California, Oregon, and Washington fisheries through 1980, and a collection of seven papers presented at the workshop. The status reports provide an historical perspective of the development of an important fishery. The papers present a fairly complete survey of biological knowledge of widow rockfish, economic status of the fishery, and fishery-independent methods for estimation of abundance. The papers also contain some information developed after the workshop. Since the workshop, the fishery has matured. Largest landings were made in 1981, when more than 28,000 mt were landed. Maximum sustainable yield (MSY) is estimated to be slightly less than 10,000 mt, and the stock appeared to be at about the MSY level in 1985. The Pacific Fishery Management Council and National Marine Fisheries Service have implemented regulations that have maintained landings since 1983 at approximately the maximum sustainable yield level. Fishery-dependent stock assessments are being made on an annual basis for the Pacific Fishery Management Council. While these assessments are considered to be the best possible with available data, scientists responsible for the assessment have chosen to delay their publication in the formal scientific literature until more data are obtained. However, the stock assessment reports are available from the Pacific Fishery Management Council. In addition to the papers in this collection, three papers have been published on widow rockfish since 1980. BoehIert, Barss, and Lamberson (1982) estimate fecundity of the species off Oregon; Gunderson (1984) describes the fishery and management actions; and Laroche and Richardson (1981) describe the morphology and distribution of juvenile widow rockfish off Oregon. During the past decade, the fishery for widow rockfish has developed from a minor fishery to one of the more important on the Pacific Coast. Our knowledge of the biology and dynamics of the species has progressed from minimal to relatively extensive for a groundfish species. It is our intention in preparing this collection of papers to make this knowledge readily available to the scientific community. (PDF file contains 63 pages.)
Resumo:
Elkhorn Slough was first exposed to direct tidal forcing from the waters of Monterey Bay with the construction of Moss Landing Harbor in 1946. Elkhorn Slough is located mid-way between Santa Cruz and Monterey close to the head of Monterey Submarine Canyon. It follows a 10 km circuitous path inland from its entrance at Moss Landing Harbor. Today, Elkhorn Slough is a habitat and sanctuary for a wide variety of marine mammals, fish, and seabirds. The Slough also serves as a sink and pathway for various nutrients and pollutants. These attributes are directly or indirectly affected by its circulation and physical properties. Currents, tides and physical properties of Elkhorn Slough have been observed on an irregular basis since 1970. Based on these observations, the physical characteristics of Elkhorn Slough are examined and summarized. Elkhorn Slough is an ebb-dominated estuary and, as a result, the rise and fall of the tides is asymmetric. The fact that lower low water always follows higher high water and the tidal asymmetry produces ebb currents that are stronger than flooding currents. The presence of extensive mud flats and Salicornia marsh contribute to tidal distortion. Tidal distortion also produces several shallow water constituents including the M3, M4, and M6 overtides and the 2MK3 and MK3 compound tides. Tidal elevations and currents are approximately in quadrature; thus, the tides in Elkhorn Slough have some of the characters of a standing wave system. The temperature and salinity of lower Elkhorn Slough waters reflect, to a large extent, the influence of Monterey Bay waters, whereas the temperature and salinity of the waters of the upper Slough (>5 km from the mouth) are more sensitive to local processes. During the summer, temperature and salinity are higher in the upper slough due to local heating and evaporation. Maximum tidal currents in Elkhorn Slough have increased from approximately 75 to 120 cm/s over the past 30 years. This increase in current speed is primarily due to the change in tidal prism which has increased from approximately 2.5 to 6.2 x 106 m3 between 1956 and 1993. The increase in tidal prism is the result of both 3 rapid man-made changes to the Slough, and the continuing process of tidal erosion. Because of the increase in the tidal prism, the currents in Elkhorn Slough exhibit positive feedback, a process with uncertain consequences. [PDF contains 55 pages]
Resumo:
ENGLISH: The accuracy and precision of dolphin school size estimates based on aerial photograph counts were examined using data collected on recent aerial and ship surveys. These estimates were found to be accurate during a 1979research cruise aboard a tuna purse-seiner; dolphin schools were photographed from the ship’s helicopter, encircled with the purse-seine, and then counted as the dolphins were released from the net. A comparison of photographic estimates with these counts indicated that the relationship was fairly close and gave no indication of significantly differing from 1:1. During a 1980 aerial study, photographic estimates from different schools, passes, and camera formats were compared and were found to be quite precise with a standard deviation of approximately 60/0 of school size. Photographic estimates were also compared with estimates made by aerial observers. Most observers tended to underestimate school size, particularly for large schools. The variability among observers was high, indicating that observers should be individually calibrated. SPANISH: Se examinó la exactitud y la precisión de las estimaciones de la magnitud de los cardúmenes de delfines basadas en el cálculo de las fotografías aéreas, usando los datos obtenidos en los últimos reconocimientos aéreos y de los barcos. En 1979, durante un crucero de investigación en un cerquero atunero, se encontró que estas estimaciones eran acertadas; se fotografiaron los cardúmenes de delfines desde un helicóptero del barco, cercados con la red y luego se contaron a medida que se libraban los delfines de la red. Una comparación de las estimaciones fotográficas con estos cálculos indicó que la relación era bastante aproximada y no hubo indicación que se diferenció significativamente de la razón 1:1. Durante un estudio aéreo en 1980, se compararon las estimaciones fotográficas de diferentes del cardúmenes, en los pases y los formatos de las cámaras y se encontró que eran bastante precisos, con una desviación normal de cerca del 60/0 de la magnitud cardumen. Se compararon también las estimaciones fotográficas con las estimaciones realizadas por los observadores aéreos. La mayoría de los observadores tienden a subestimar la magnitud de los cardúmenes, especialmente los cardúmenes grandes. La variabilidad entre los observadores fue elevada, lo que indica que se deben calibrar individualmente los datos de observadores. (PDF contains 39 pages.)
Resumo:
William Francis Thompson (1888–1965) was a preeminent fishery scientist of the early to mid twentieth century. Educated at Stanford University in California (B.A. 1911, Ph.D. 1930), Thompson conducted pioneering research on the Pacific halibut, Hippoglossus stenolepis, from 1914 to 1917 for the British Columbia Provincial Fisheries Department. He then directed marine fisheries research for the State of California from 1917 to 1924, was Director of Investigations for the International Fisheries Commission from 1924 to 1939, and Director of the International Pacific Salmon Fisheries Commission from 1937 to 1942. He was also Director of the School of Fisheries, University of Washing-ton, Seattle, from 1930 to 1947. Thompson was the founding director in 1947 of the Fisheries Research Institute at the University of Washington and served in that capacity until his retirement in 1958. He was a dominant figure in fisheries research of the Pacific Northwest and influenced a succession of fishery scientists with his yield-based analysis of fishery stocks, as opposed to studying the fishes’environment. Will Thompson was also a major figure in education, and many of his former students attained leadership positions in fisheries research and administration.
Resumo:
William Francis Thompson (1888–1965), as a temporary employee of the British Columbia Provincial Fisheries Department, was assigned in 1914 to under-take full-time studies of the Pacific halibut, Hippoglossus stenolepis. The fishery was showing signs of depletion, so Thompson undertook the inquiry into this resource, the first intensive study on the Pacific halibut. Three years later, Thompson, working alone, had provided a basic foundation of knowledge for the subsequent management of this resource. He published seven land-mark papers on this species, and this work marked the first phase of a career in fisheries science that was to last nearly 50 years.
Resumo:
William Francis Thompson (1888–1965), an early fishery biologist, joined the California Fish and Game Commission in 1917 with a mandate to investigate the marine fisheries of the state. He initiated studies on the albacore tuna, Thunnus alalunga, and the Pacific sardine, Sardinops sagax, as well as studies on other economically important marine organisms. Thompson built up a staff of fishery scientists, many of whom later attained considerable renown in their field, and he helped develop, and then direct, the commission’s first marine fisheries laboratory. During his tenure in California, he developed a personal philosophy of research that he outlined in several publications. Thompson based his approach on the yield-based analysis of the fisheries as opposed to large-scale environmental studies. He left the state agency in 1925 to direct the newly formed International Fisheries Commission (now the International Pacific Halibut Commission). William Thompson became a major figure in fisheries research in the United States, and particularly in the Pacific Northwest and Alaska, during the first half of the 20th cent
Resumo:
William Francis Thompson (1888–1965), as a temporary employee of the British Columbia Provincial Fisheries Department, was assigned in 1914 to under-take full-time studies of the Pacific halibut, Hippoglossus stenolepis. The fishery was showing signs of depletion, so Thompson undertook the inquiry into this resource, the first intensive study on the Pacific halibut. Three years later, Thompson, working alone, had provided a basic foundation of knowledge for the subsequent management of this resource. He published seven land-mark papers on this species, and this work marked the first phase of a career in fisheries science that was to last nearly 50 years.
Resumo:
Beluga, Delphinapterus leucas, distribution in the Gulf of Alaska and adjacent inside waters was examined through a review of surveys conducted as far back as 1936. Although beluga sightings have occurred on almost every marine mammal survey in northern Cook Inlet (over 20 surveys reported here), beluga sightings have been rare outside the inlet in the Gulf of Alaska. More than 150,000 km of dedicated survey effort in the Gulf of Alaska resulted in sightings of over 23,000 individual cetaceans, of which only 4 beluga sightings (5 individuals) occurred. In addition, nearly 100,000 individual cetaceans were reported in the Platforms of Opportunity database; yet, of these, only 5 sightings (39 individuals) were belugas. Furthermore, approximately 19 beluga sightings (>260 individuals), possibly including resightings, have been reported without information on effort or other cetacean sightings. Of the 28 sightings of belugas outside of Cook Inlet, 9 were near Kodiak Island, 10 were in or near Prince William Sound, 8 were in Yakutat Bay, and 1 anomalous sighting was well south of the Gulf. These sightings support archaeological and commercial harvest evidence indicating the only persistent group of belugas in the Gulf of Alaska occurs in Cook Inlet.
Resumo:
We describe reproductive dynamics of female spotted seatrout (Cynoscion nebulosus) in South Carolina (SC). Batch fecundity (BF), spawning frequency (SF), relative fecundity (RF), and annual fecundity (AF) for age classes 1−3 were estimated during the spawning seasons of 1998, 1999, and 2000. Based on histological evidence, spawning of spotted seatrout in SC was determined to take place from late April through early September. Size at first maturity was 248 mm total length (TL); 50% and 100% maturity occurred at 268 mm and 301 mm TL, respectively. Batch fecundity estimates from counts of oocytes in final maturation varied significantly among year classes. One-year-old spotted seatrout spawned an average of 145,452 oocytes per batch, whereas fish aged 2 and 3 had a mean BF of 291,123 and 529,976 oocytes, respectively. We determined monthly SF from the inverse of the proportion of ovaries with postovulatory follicles (POF) less than 24 hours old among mature and developing females. Overall, spotted seatrout spawned every 4.4 days, an average of 28 times during the season. A chronology of POF atresia for water temperature >25°C is presented. Length, weight (ovary-free), and age explained 67%, 65%, and 58% of the variability in BF, respectively. Neither RF (number of oocytes/g ovary-free weight) nor oocyte diameter varied significantly with age. However, RF was significantly greater and oocyte diameter was smaller at the end of the spawning season. Annual fecundity estimates were approximately 3.2, 9.5, and 17.6 million oocytes for each age class, respectively. Spotted seatrout ages 1−3 contributed an average of 29%, 39%, and 21% to the overall reproductive effort according to the relative abundance of each age class. Ages 4 and 5 contributed 7% and 4%, respectively, according to predicted AF values.
Resumo:
Fecundity in striped mullet (Mugil cephalus) from South Carolina correlated highly with length and weight, but not with age. Oocyte counts ranged from 4.47 × 105 to 2.52 × 106 in 1998 for fish ranging in size from 331 mm to 600 mm total length, 2.13 × 105to 3.89 × 106in 1999 for fish ranging in size from 332 mm to 588 mm total length, and 3.89 × 105 to 3.01 × 106 in 2000 for fish ranging in size from 325 mm to 592 mm total length. The striped mullet in this study had a high degree of variability in the size-at-age relation-ship; this variability was indicative of varied growth rates and compounded the errors in estimating fecundity at age. The stronger relationship of fecundity to fish size allowed a much better predictive model for potential fecundity in striped mullet. By comparing fecundity with other measures of reproductive activity, such as the gonadosomatic index, histological examination, and the measurement of mean oocyte diameters, we determined that none of these methods by themselves were adequate to determine the extent of reproductive development. Histological examinations and oocyte diameter measurements revealed that fecundity counts could be made once developing oocytes reached 0.400 μm or larger. Striped mullet are isochronal spawners; therefore fecundity estimates for this species are easier to determine because oocytes develop at approximately the same rate upon reaching 400 μm. This uniform development made oocytes that were to be spawned easier to count. When fecundity counts were used in conjunction with histological examination, oocyte diameter measurements, and gonadosomatic index, a more complete measure of reproductive potential and the timing of the spawning season was possible. In addition, it was determined that striped mullet that recruit into South Carolina estuaries spawn from October through April.