3 resultados para Cation hydrolysis

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of gibbing process on the protein hydrolysis in terms of free alpha amino nitrogen (FAN) content during the ripening of barrel salted herring at low temperature (4°C) was investigated. For this purpose North Sea herring (Clupea harengus) from north-east British coast was salted in polypropylene barrels and allowed to ripen at 4°C. This process of barrel salting was carried out for whole fish in one batch and gibbed fish in another batch. The investigation was performed by using new salt and used salt in separate barrels for each batch of experimental fish. Results of the present study show that protein hydrolysis was significantly higher in the ripened salt-herring produced from whole fish which was found to have more characteristic sensory properties than those produced from gibbed fish. Similar result (proteolysis) was obtained when the investigation was repeated for the spent herring although the spent herring fails to produce a ripened product with the desired characteristic sensory attributes, compared to those of pre-spawning herring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolytic changes in the lipids of mackerel (Rastrelliger kanagurta) during storage at -l8°C were studied with a view to understand the factors involved in the formation of free fatty acids. Only the phosphorylated fraction did undergo hydrolysis at an appreciable rate. It was found that the free fatty acid production was mainly associated with the phospholipid hydrolysis. As regards the triglycerides and unsaponifiable matter, there was no significant change in levels during frozen storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid hydrolysis and the nature of fatty acids lost as a result of lipid hydrolysis in milk fish (Chanos chanos) during frozen storage at -20°C is discussed in this paper. There was a preferential loss of saturated acids during the first three weeks of storage. This was followed by loss of polyunsaturated acids during the next seven weeks. Sharp decrease in the levels of monounsaturated acids was observed from the 10th week of frozen storage. These observations are due to the preferential hydrolysis of phospholipids with relatively high proportion of saturated acids during the first three weeks, followed by the hydrolysis of phospholipids with high proportions of polyunsaturated fatty acids from the 3rd to the 10th week, and finally, predominant hydrolysis of neutral lipids from the 10th week onwards. Storage of fish in the ice prior to freezing was found to accelerate lipid hydrolysis, especially that of neutral lipids, during frozen storage.