27 resultados para Caroline Atoll
em Aquatic Commons
Resumo:
A deep-water trapping survey in the Palauan archipelago, Western Caroline Islands, has revealed an abundance of the Japanese red crab, Chaceon granulatus. The recorded depth range (250-900 m) is similar to that of other geryonids, but the large numbers of females caught below 700 m is atypical. Mean yields in excess of 5 kg crabs plus 1 kg shrimp, Heterocarpus laevigatus, by-catch per trap-night were attainable at optimum depths. Chaceon granulatus is apparently a very large geryonid, with maximum weights of 2.02 kg and 1.51 kg recorded for male and female specimens, respectively. A range of body colors was observed: Orange-red shades appear to dominate the deeper waters (below 500 m) while yellow-tan colors are more abundant in the upper reaches. Preliminary evidence suggests that Chaceon granulatus is highly marketable, and the infrastructure in Palau is such that crabs could either be marketed fresh locally or airfreighted to Japan as a quick-frozen product. The high post-trapping survival rates observed indicate that maintaining crabs in live-holding tanks may be a feasible option. The large catches and quality of deep-water crabs taken suggests that the Palauan population of Chaceon granulatus may be able to support a small-scale fishery. It is not yet known whether this population is unusually large or whether these findings typify the deep forereef fauna of the region.
Resumo:
Digital maps of the coral reef ecosystem (<~30m deep) of Majuro Atoll, Republic of the Marshall Islands, were created through visual interpretation of remote sensing imagery. Digital Globe’s Quickbird II satellite images were acquired between 2004 and 2006 and georeferenced to within 1.6 m of their true positions. Reef ecosystem features were digitized directly into a GIS at a display scale of 1:4000 using a minimum feature size of 1000 square meters. Benthic features were categorized according to a classification scheme with attributes including zone (location, such as lagoon or forereef, etc.), structure (bottom type, such as sand or patch reef, etc.) and percent hard bottom. Ground validation of habitat features was conducted at 311 sites in 2009. Resulting maps consisted of 1829 features covering 366 square kilometers. Results demonstrate that reef zones occurred in a typical progression of narrow bands from offshore, though forereef, reef flat, shoreline, land, backreef, and lagoon habitats. Lagoon was the largest zone mapped and covered nearly 80% of the atoll, although much of it was too deep to have structures identified from the satellite imagery. Dominant habitat structures by area were pavement and aggregate reef, which covered 29% and 18% of the mapped structures, respectively. Based on the number of features, individual and aggregated patch reefs comprised over 40% of the features mapped. Products include GIS based maps, field videos and pictures, satellite imagery, PDF atlas, and this summary report. Maps and associated data can be used to support science and management activities on Majuro reef ecosystems including inventory, monitoring, conservation, and sustainable development applications.
Resumo:
The United States Coral Reef Task Force (USCRTF) was established in 1998 by Presidential Executive Order 13089 to lead U.S. efforts to preserve and protect coral reef ecosystems. Current, accurate, and consistent maps greatly enhance efforts to preserve and manage coral reef ecosystems. With comprehensive maps and habitat assessments, coral reef managers can be more effective in designing and implementing a variety of conservation measures, including: • Long-term monitoring programs with accurate baselines from which to track changes; • Place-based conservation measures such as marine protected areas (MPAs); and • Targeted research to better understand the oceanographic and ecological processes affecting coral reef ecosystem health. The National Oceanic and Atmospheric Administration’s (NOAA) National Ocean Service (NOS) is tasked with leading the coral ecosystem mapping element of the U.S. Coral Reef Task Force (CRTF) under the authority of the Presidential Executive Order 13089 to map and manage the coral reefs of the United States.
Resumo:
Digital maps of the shallow (<~30m deep) coral reef ecosystems of Majuro Atoll, Republic of the Marshall Islands, were created through visual interpretation of remote sensing imagery acquired between 2004 and 2006. Reef ecosystem features were digitized directly into a Geographic Information System. Benthic features were categorized according to a classification scheme with attributes including zone (location such as lagoon or forereef, etc.), structure (bottom type such as sand or patch reef, etc.) and percent hard bottom. This atlas consists of 27 detailed maps displaying reef zone and structure of coral ecosystems around Majuro. Adjacent maps in the atlas overlap slightly to ensure complete coverage. Maps and associated products can be used to support science and management activities on Majuro reef ecosystems including inventory, monitoring, conservation, and sustainable development applications. Maps are not to be used for navigation.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Clipperton Atoll (10°18'N, 109°13'W), lies within the eastern Pacific elongated warm water pool centered at 10°N and is situated at the boundary of the North Equatorial Counter-Current (NECC) and westward-flowing eddy currents moving away from Central America. ... Fifteen coral cores were collected from massive heads of Porites lobata in April 1994 for the purpose of reconstructing oceanographic and climatic conditions at this open ocean site in the eastern Pacific.
Resumo:
CONTENTS: Creating understanding and ownership of collaborative research results through ‘learning by doing,’ by Robert Arthur and Caroline Garaway. Fish culture, farming, markets and promotion: an integrated, sustainable approach to aquaculture and rural development, by Pen Rotha and Brendan Boucher. Fisheries policy reform impact assessment in Cambodia: understanding policy and poor people, by Philip Townsley and Sem Viryak. “Shrimp Hero” Phan The Phuong, by Ngo Minh Khoi. Coral farming in Vietnam, by Nguyen Viet Vinh. The global fisheries market: can rural poor people benefit? Issues raised by STREAM Media Monitoring Reports, by Paul Bulcock.
Resumo:
Marine reserves, often referred to as no-take MPAs, are defined as areas within which human activities that can result in the removal or alteration of biotic and abiotic components of an ecosystem are prohibited or greatly restricted (NRC 2001). Activities typically curtailed within a marine reserve are extraction of organisms (e.g., commercial and recreational fishing, kelp harvesting, commercial collecting), mariculture, and those activities that can alter oceanographic or geologic attributes of the habitat (e.g., mining, shore-based industrial-related intake and discharges of seawater and effluent). Usually, marine reserves are established to conserve biodiversity or enhance nearby fishery resources. Thus, goals and objectives of marine reserves can be inferred, even if they are not specifically articulated at the time of reserve formation. In this report, we review information about the effectiveness of the three marine reserves in the Monterey Bay National Marine Sanctuary (Hopkins Marine Life Refuge, Point Lobos Ecological Reserve, Big Creek Ecological Reserve), and the one in the Channel Islands National Marine Sanctuary (the natural area on the north side of East Anacapa Island). Our efforts to objectively evaluate reserves in Central California relative to reserve theory were greatly hampered for four primary reasons; (1) few of the existing marine reserves were created with clearly articulated goals or objectives, (2) relatively few studies of the ecological consequences of existing reserves have been conducted, (3) no studies to date encompass the spatial and temporal scope needed to identify ecosystem-wide effects of reserve protection, and (4) there are almost no studies that describe the social and economic consequences of existing reserves. To overcome these obstacles, we used several methods to evaluate the effectiveness of subtidal marine reserves in Central California. We first conducted a literature review to find out what research has been conducted in all marine reserves in Central California (Appendix 1). We then reviewed the scientific literature that relates to marine reserve theory to help define criteria to use as benchmarks for evaluation. A recent National Research Council (2001) report summarized expected reserve benefits and provided the criteria we used for evaluation of effectiveness. The next step was to identify the research projects in this region that collected information in a way that enabled us to evaluate reserve theory relative to marine reserves in Central California. Chapters 1-4 in this report provide summaries of those research projects. Contained within these chapters are evaluations of reserve effectiveness for meeting specific objectives. As few studies exist that pertain to reserve theory in Central California, we reviewed studies of marine reserves in other temperate and tropical ecosystems to determine if there were lessons to be learned from other parts of the world (Chapter 5). We also included a discussion of social and economic considerations germane to the public policy decision-making processes associated with marine reserves (Chapter 6). After reviewing all of these resources, we provided a summary of the ecological benefits that could be expected from existing reserves in Central California. The summary is presented in Part II of this report. (PDF contains 133 pages.)
Resumo:
Time-lapse remote photo-sequences at 73-700 m depth off Palau, Western Caroline Islands, show that the caridean shrimp Heterocarpus laevigatus tends to be a solitary animal, occurring below ~350 m, that gradually accumulates around bait sites over a prolonged period. A smaller speies, H. ensifer, tends to move erratically in swarms, appearing in large numbers in the upper part of its range (<250 m) during the evening crepuscular period and disappearing at dawn. Trapping and photsequence data indicate the depth range of H. ensifer (during daylight) is ~250-550 M, while H. laevigatus ranges from 350 m to at least 800 m, along with the geryonid crab Chaceon granulatus. Combined trapping for Heterocarpus laevigatus and Chaceon granulatus, using a three-chamber box-trap and extended soak times (48-72 hr), may be an appropriate technique for small-scale deep-water fisheries along forereef slopes of Indo-Pacific archipelagoes.
Resumo:
NOAA’s National Centers for Coastal Ocean Science (NCCOS)-Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch, National Park Service (NPS), US Geological Survey, and the University of Hawaii used acoustic telemetry to quantify spatial patterns and habitat affinities of reef fishes around the island of St. John, US Virgin Islands. The objective of the study was to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef National Monument (VICRNM), the Virgin Islands National Park (VIIS), and Territorial waters surrounding St. John. In order to better understand species’ habitat utilization patterns among management regimes, we deployed an array of hydroacoustic receivers and acoustically tagged reef fishes. Thirty six receivers were deployed in shallow near-shore bays and across the shelf to depths of approximately 30 m. One hundred eighty four individual fishes were tagged representing 19 species from 10 different families with VEMCO V9-2L-R64K transmitters. The array provides fish movement information at fine (e.g., day-night and 100s meters within a bay) to broad spatial and temporal scales (multiple years and 1000s meters across the shelf). The long term multi-year tracking project provides direct evidence of connectivity across habitat types in the seascape and among management units. An important finding for management was that a number of individuals moved among management units (VICRNM, VINP, Territorial waters) and several snapper moved from near-shore protected areas to offshore shelf-edge spawning aggregations. However, most individuals spent the majority of their time with VIIS and VICRNM, with only a few wide-ranging species moving outside the management units. Five species of snappers (Lutjanidae) accounted for 31% of all individuals tagged, followed by three species of grunts (Haemulidae) accounting for an additional 23% of the total. No other family had more than a single species represented in the study. Bluestripe grunt (Haemulon sciurus) comprised 22% of all individuals tagged, followed by lane snappers (Lutjanus synagris) at 21%, bar jack (Carangoides ruber) at 11%, and saucereye porgy (Calamus calamus) at 10%. The largest individual tagged was a 70 cm TL nurse shark (Ginglymostoma cirratum), followed by a 65 cm mutton snapper (Lutjanus analis), a 47 cm bar jack, and a 41 cm dog snapper (Lutjanus jocu). The smallest individuals tagged were a 19 cm blue tang (Acanthurus coeruleus) and a 19.2 cm doctorfish (Acanthurus chirurgus). Of the 40 bluestriped grunt acoustically tagged, 73% were detected on the receiver array. The average days at large (DAL) was 249 (just over 8 months), with one individual detected for 930 days (over two and a half years). Lane snapper were the next most abundant species tagged (N = 38) with 89% detected on the array. The average days at large (DAL) was 221 with one individual detected for 351 days. Seventy-one percent of the bar jacks (N = 21) were detected on the array with the average DALs at 47 days. All of the mutton snapper (N = 12) were detected on the array with an average DAL of 273 and the longest at 784. The average maximum distance travelled (MDT) was ca. 2 km with large variations among species. Grunts, snappers, jacks, and porgies showed the greatest movements. Among all individuals across species, there was a positive and significant correlation between size of individuals and MDT and between DAL and MDT.
Resumo:
Colonies of the scleractinian coral Acropora palmata, listed as threatened under the US Endangered Species Act in 2006, have been monitored in Hawksnest Bay, within Virgin Islands National Park, St. John, from 2004 through 2010 by scientists with the US Geological Survey, National Park Service, and the University of the Virgin Islands. The focus has been on documenting the prevalence of disease, including white band, white pox (also called patchy necrosis and white patches), and unidentified diseases (Rogers et al., 2008; Muller et al., 2008). In an effort to learn more about the pathologies that might be involved with the diseases that were observed, samples were collected from apparently healthy and diseased colonies in July 2009 for analysis. Two different microbial assays were performed on Epicentre Biotechnologies DNA swabs containing A. palmata coral mucus, and on water and sediment samples collected in Hawksnest Bay. Both assays are based on polymerase chain reaction (PCR) amplification of portions of the small rRNA gene (16S). The objectives were to determine 1) if known coral bacterial pathogens Serratia marcescens (Acroporid Serratiosis), Vibrio coralliilyticus (temperature-dependent bleaching, White Syndrome), Vibrio shiloi (bleaching, necrosis), and Aurantimonas coralicida (White Plague Type II) were present in any samples, and 2) if there were any differences in microbial community profiles of each healthy, unaffected or diseased coral mucus swab. In addition to coral mucus, water and sediment samples were included to show ambient microbial populations. In the first test, PCR was used to separately amplify the unique and diagnostic region of the 16S rRNA gene for each of the coral pathogens being screened. Each pathogen test was designed so that an amplified DNA fragment could be seen only if the specific pathogen was present in a sample. A positive result was indicated by bands of DNA of the appropriate size on an agarose gel, which separates DNA fragments based on the size of the molecule. DNA from pure cultures of each of the pathogens was used as a positive control for each assay.