87 resultados para Cape Cod (Mass.)--Maps
em Aquatic Commons
Resumo:
The non-native, invasive genotype of the common reed ( Phragmites australis (Cav.) Trin. ex Steudel) has become a problem of significant proportions throughout wetlands of North America (Saltonstall 2001). Although attempts to suppress or eradicate Phragmites have utilized a wide variety of techniques, herbicides have generally been most effective (Marks et al. 1994). In the spring, mid-summer, and late summer of 2003, we attempted to opportunistically control Phragmites in five freshwater ponds within Cape Cod National Seashore (CCNS) by repeatedly severing stems underwater, at ground level.(PDF has 4 pages.)
Resumo:
Cape Cod Bay (Massachusetts) is the only known winter and early spring feeding area for concentrations of the endangered North Atlantic right whale (Eubalaena glacialis) population. During January–May, 1998–2002, 167 aerial surveys were conducted (66,466 km of total survey effort), providing a complete representation of the spatiotemporal distribution of right whales in the bay during winter and spring. A total of 1553 right whales were sighted; some of these sightings were multiple sightings of the same individuals. Right whale distribution and relative abundance patterns were quantified as sightings per unit of effort (SPUE) and partitioned into 103 23-km2 cells and 12 2-week periods. Significant interannual variations in mean SPUE and timing of SPUE maxima were likely due to physically forced changes in available food resources. The area of greatest SPUE expanded and contracted during the season but its center remained in the eastern bay. Most cells with SPUE>0 were inside the federal critical habitat (CH) and this finding gave evidence of the need for management measures within CH boundaries to reduce anthropogenic mortality from vessel strikes and entanglement. There was significant within-season SPUE variability: low in December−January, increasing to a maximum in late February−early April, and declining to zero in May; and these results provide support for management measures from 1 January
Resumo:
The history of whaling in the Gulf of Maine was reviewed primarily to estimate removals of humpback whales, Megaptera novaeangliae, especially during the 19th century. In the decades from 1800 to 1860, whaling effort consisted of a few localized, small-scale, shore-based enterprises on the coast of Maine and Cape Cod, Mass. Provincetown and Nantucket schooners occasionally conducted short cruises for humpback whales in New England waters. With the development of bomb-lance technology at mid century, the ease of killing humpback whales and fin whales, Balaenoptera physalus, increased. As a result, by the 1870’s there was considerable local interest in hunting rorquals (baleen whales in the family Balaenopteridae, which include the humpback and fin whales) in the Gulf of Maine. A few schooners were specially outfitted to take rorquals in the late 1870’s and 1880’s although their combined annual take was probably no more than a few tens of whales. Also in about 1880, fishing steamers began to be used to hunt whales in the Gulf of Maine. This steamer fishery grew to include about five vessels regularly engaged in whaling by the mid 1880’s but dwindled to only one vessel by the end of the decade. Fin whales constituted at least half of the catch, which exceeded 100 animals in some years. In the late 1880’s and thereafter, few whales were taken by whaling vessels in the Gulf of Maine.
Resumo:
This study, part of a broader investigation of the history of exploitation of right whales, Balaena glacialis, in the western North Atlantic, emphasizes U.S. shore whaling from Maine to Delaware (from lat. 45°N to 38°30'N) in the period 1620–1924. Our broader study of the entire catch history is intended to provide an empirical basis for assessing past distribution and abundance of this whale population. Shore whaling may have begun at Cape Cod, Mass., in the 1620’s or 1630’s; it was certainly underway there by 1668. Right whale catches in New England waters peaked before 1725, and shore whaling at Cape Cod, Martha’s Vineyard, and Nantucket continued to decline through the rest of the 18th century. Right whales continued to be taken opportunistically in Massachusetts, however, until the early 20th century. They were hunted in Narragansett Bay, R.I., as early as 1662, and desultory whaling continued in Rhode Island until at least 1828. Shore whaling in Connecticut may have begun in the middle 1600’s, continuing there until at least 1718. Long Island shore whaling spanned the period 1650–1924. From its Dutch origins in the 1630’s, a persistent shore whaling enterprise developed in Delaware Bay and along the New Jersey shore. Although this activity was most profi table in New Jersey in the early 1700’s, it continued there until at least the 1820’s. Whaling in all areas of the northeastern United States was seasonal, with most catches in the winter and spring. Historically, right whales appear to have been essentially absent from coastal waters south of Maine during the summer and autumn. Based on documented references to specific whale kills, about 750–950 right whales were taken between Maine and Delaware, from 1620 to 1924. Using production statistics in British customs records, the estimated total secured catch of right whales in New England, New York, and Pennsylvania between 1696 and 1734 was 3,839 whales based on oil and 2,049 based on baleen. After adjusting these totals for hunting loss (loss-rate correction factor = 1.2), we estimate that 4,607 (oil) or 2,459 (baleen) right whales were removed from the stock in this region during the 38-year period 1696–1734. A cumulative catch estimate of the stock’s size in 1724 is 1,100–1,200. Although recent evidence of occurrence and movements suggests that right whales continue to use their traditional migratory corridor along the U.S. east coast, the catch history indicates that this stock was much larger in the 1600’s and early 1700’s than it is today. Right whale hunting in the eastern United States ended by the early 1900’s, and the species has been protected throughout the North Atlantic since the mid 1930’s. Among the possible reasons for the relatively slow stock recovery are: the very small number of whales that survived the whaling era to become founders, a decline in environmental carrying capacity, and, especially in recent decades, mortality from ship strikes and entanglement in fishing gear.
Resumo:
Summary: This cruise report is a summary of a field survey conducted within the Stellwagen Bank National Marine Sanctuary (SBNMS), located between Cape Cod and Cape Ann at the mouth of Massachusetts Bay. The survey was conducted June 14 – June 21, 2008 on NOAA Ship NANCY FOSTER Cruise NF-08-09-CCEHBR. Multiple indicators of ecological condition and human dimensions were sampled synoptically at each of 30 stations throughout SBNMS using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. In addition to the fish samples that were collected for analysis of chemical contaminants relative to human-health consumption limits, other human-dimension indicators were sampled as well including presence or absence of fishing gear, vessels, surface trash, marine mammals, and noxious sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout SBNMS, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing a few preliminary results and observations are reported here. A final report will be completed once all data have been processed. The results are anticipated to be of value in supporting goals of the SBNMS and National Marine Sanctuary Program aimed at the characterization, protection, and management of sanctuary resources (pursuant to the National Marine Sanctuary Reauthorization Act) as well as a new priority of NCCOS and NOAA to apply Ecosystem Based approaches to the Management of coastal resources (EBM) through Integrated Ecosystem Assessments (IEAs) conducted in various coastal regions of the U.S. including the Northeast Atlantic continental shelf. This was a multi-disciplinary partnership effort made possible by scientists from the following organizations: NOAA, National Ocean Service (NOS), National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Environmental Health and Biomolecular Research (CCEHBR), Charleston, SC. U.S. Environmental Protection Agency (EPA), National Health and Environmental Effects Research Laboratory (NHEERL), Atlantic Ecology Division (GED), Narragansett, RI. U.S. Environmental Protection Agency (EPA), National Health and Environmental Effects Research Laboratory (NHEERL), Gulf Ecology Division (GED), Gulf Breeze, FL. U.S. Geological Survey (USGS), National Wetlands Research Center, Gulf Breeze Project Office, Gulf Breeze, FL. NOAA, Office of Marine and Aviation Operations (OMAO), NOAA ship Nancy Foster. (31pp) (PDF contains 58 pages)
Resumo:
This cruise report is a summary of a field survey conducted in coastal-ocean waters of the Mid-Atlantic Bight from Nags Head, North Carolina to Cape Cod, Massachusetts and from approximately 1 nautical mile (nm) of shore seaward to the shelf break (100 m). The survey was conducted May 12 - May 21, 2006 on NOAA Ship NANCY FOSTER Cruise NF-06-06-NCCOS. Multiple indicators of ecological condition were sampled synoptically at each of 49 stations throughout the region using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, pH, sediment grain size, and organic carbon content. The overall purpose of the survey was to collect data to assess the status of ecological condition in coastal-ocean waters of the region, based on these various indicators, and to provide this information as a baseline for determining how environmental conditions may be changing with time. The results will be of value in helping to broaden our understanding of the status of ecological resources and their controlling factors, including impacts of potential ecosystem stressors, in such strategic coastal areas. (18pp.) (PDF contains 24 pages)
Resumo:
Forty-nine species of erect Bryozoa from a broad range of Cyclostome, Ctenostome, and Cheilostome families are described and illustrated, and an artificial dichotomous key is provided for their identification. In general, the marine bryozoan faunas of the northeastern coasts of the United States are poorly known; species records are sparse and voucher collections few, and it is certain that many more species occur in this region than are presently known. The species described here occur in intertidal, coastal or offshore habitats; some are well known and have been recorded on numerous previous occasions, others have been only rarely reported, while a few are known to occur commonly in the north of the region but have yet to be recorded south of Cape Cod. Some of the species described have not been recorded at all on northeastern coasts of the United States, but are widely distributed in North Atlantic continental shelf habitats and perhaps occur in similar parts of the outer shelf of this region. This fauna is thus provisional, but is intended to stimulate further work on the Bryozoa. (PDF file contains 52 pages.)
Resumo:
Acomprehensive description of the Massachusetts coastal lobster (Homarus americanus) resou,rce was obtained by sampling commercial catches coastwide at sea and at dealerships between 1981 and 1986. Acommercial lobster sea-sampling program, wherein six coastal regions were sampled monthly, with an areal and temporal data weighting design, was the primary source of data. An improved index of catch per trap haul/set-over-day was generated by modeling the relationship between catch and immersion time and standardizing effort. This 6-year time-series of mean annual catch rates tracked closely the landings trend for territorial waters. During the study period there was a gradual increase in indices of exploitation and total annual mortality which corresponded to a gradual decline in mean carapace length of marketable lobster. The frequency of culls escalated from 10.0% in 1981 to 20.9% in 1986, while the percentage of lobster found dead in traps was consistently less than 1%. The sex ratio (%F:%M) was significantly different from 50:50 and approximated a 60:40 relationship during the study period. Male and female weight-length relationships were significantly different. Females weighed more than males at smaller sizes and less than males at larger sizes. A north-south clinal trend was evident wherein lobster north of Cape Cod weighed less at length than those from regions south of Cape Cod. Functional size-maturity relationships were developed for female lobster by staging cement gland development. Proportions mature at size represent more realistic values than those obtained by analyses of percent of females ovigerous. Regional variation occurred in most of the parameters studied. Three lobster groups, differing in major population descriptors, are defined by our data.(PDF file contains 28 pages.)
Resumo:
Rainbow smelt (Osmerus mordax) are small anadromous fish that live in nearshore coastal waters during much of the year and migrate to tidal rivers to spawn during the spring. They are a key prey species in marine food webs, as they are consumed by larger organisms such as striped bass, bluefish, and seabirds. In addition, smelt are valued culturally and economically, as they support important recreational and commercial fisheries. The Atlantic Coast range of rainbow smelt has been contracting in recent decades. Historically, populations extended from the Delaware River to eastern Labrador and the Gulf of St. Lawrence (Buckley 1989). More recent observations indicate that rainbow smelt spawning populations have been extirpated south of Long Island Sound, and evidence of spawning activity is extremely limited between Long Island and Cape Cod, MA. In the Gulf of Maine region, spawning runs are still observed, but monitoring surveys as well as commercial and recreational catches indicate that these populations have also declined (e.g., Chase and Childs 2001). Many diverse factors could drive the recently noted declines in rainbow smelt populations, including spawning habitat conditions, fish health, marine environmental conditions, and fishing pressure. Few studies have assessed any of these potential threats or their joint implications. In 2004, the National Marine Fisheries Service (NMFS) listed rainbow smelt as a species of concern. Subsequently, the states of Maine, New Hampshire, and Massachusetts were awarded a grant through NMFS’s Proactive Conservation Program to gather new information on the status of rainbow smelt, identify factors that affect spawning populations, and develop a multi-state conservation program. This paper provides an overview of this collaborative project, highlighting key biological monitoring and threats assessment research that is being conducted throughout the Gulf of Maine. (PDF contains 4 pages)
Resumo:
The bay anchovy occurs along the Atlantic and Gulf of Mexico coasts, from Cape Cod, Massachusetts, to Yucatan, Mexico (Hildebrand 1963), except for the Florida Keys where it is apparently absent (Daly 1970). (PDF contains 22 pages)
Resumo:
A decline in the abundance of blackback flounders, together with the withdrawal of vessels from this fishery, has resulted in a lowered catch in recent years compared to the peak period 1928 through 1931. Data obtained from U. S. Fish and Wildlife Service Hatchery catch records and from fishermen's log book records show a drop in abundance of 63 per cent from the early 1930's to the present in the Boothbay Harbor region and of 31 to 40 per cent in the area south of Cape Cod. Information on the early life history and distribution of young blackback flounders and the size and age composition and distribution of fish subject to the commercial and sport fisheries indicates that the young are the product of local spawning and that the sport and commercial fisheries draw on a resident stock of primarily adult fish.
Resumo:
Although the Atlantic white-sided dolphin (Lagenorhynchus acutus) is one of the most common dolphins off New England, little has been documented about its diet in the western North Atlantic Ocean. Current federal protection of marine mammals limits the supply of animals for investigation to those incidentally caught in the nets of commercial fishermen with observers aboard. Stomachs of 62 L. acutus were examined; of these 62 individuals, 28 of them were caught by net and 34 were animals stranded on Cape Cod. Most of the net-caught L. acutus were from the deeper waters of the Gulf of Maine. A single stomach was from the continental slope south of Georges Bank. At least twenty-six fish species and three cephalopod species were eaten. The predominant prey were silver hake (Merluccius bilinearis), spoonarm octopus (Bathypolypus bairdii), and haddock (Melanogrammus aeglefinus). The stomach from a net-caught L. acutus on the continental slope contained 7750 otoliths of the Madeira lanternfish (Ceratoscopelus maderensis). Sand lances (Ammodytes spp.) were the most abundant (541 otoliths) species in the stomachs of stranded L. acutus. Seasonal variation in diet was indicated; pelagic Atlantic herring (Clupea harengus) was the most important prey in summer, but was rare in winter. The average length of fish prey was approximately 200 mm, and the average mantle length of cephalopod prey was approximately 50 mm.
Resumo:
During 1995 and 1996, the National Marine Fisheries Service (NMFS), conducted pilot studies to develop survey methodology and a sampling strategy for assessment of coastal shark populations in the Gulf of Mexico and western North Atlantic. Longline gear similar to that used in the commercial shark fishery was deployed at randomly selected stations within three depth strata per 60 nautical mile gridf rom Brownsville, Tex. to Cape Ann, Mass. The survey methodology and gear design used in these surveys proved effective for capturing many of the small and large coastal sharks regulated under the auspices of the 1993 Fisheries Management Plan (FMP) for Sharks oft he Atlantic Ocean. Shark catch rates, species composition, and relative abundance documented in these pilot surveys were similar to those reported from observer programs monitoring commercial activities. During 78 survey days, 269 bottom longline sets were completed with 879 sharks captured.
Resumo:
Many studies have been made of the effects of oil on marine invertebrates, plants (marine algae and phytoplankton), and vertebrates such as seabirds and marine mammals. An excellent review of these findings, which includes some references to fish and pathological effects of aromatic hydrocarbons, has been published by the Royal Society, London (Clark, 1982). That review dealt with the environmental effects of such major oil spills or releases such as those by the tankers Torry Canyon (119,000 t) on the south coast of England, Metula (50-56,000 t) in the Straits of Magellan, Argo Merchant (26,000 t) off Cape Cod, and the super tanker Amoco Cadiz (223,000 t) on the coast of northern Brittany. Those spills were studied to determine their effect on living resources. In contrast there are few references on the impact of oil spills on pelagic fishery resources.
Resumo:
The mission of NOAA’s National Marine Sanctuary Program (NMSP) is to serve as the trustee for a system of marine protected areas, to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy while facilitating compatible uses. Since 1972, thirteen National Marine Sanctuaries, representing a wide variety of ocean environments, have been established, each with management goals tuned to their unique diversity. Extending from Cape Ann to Cape Cod across the mouth of Massachusetts Bay, Stellwagen Bank National Marine Sanctuary (NMS) encompasses 2,181 square kilometers of highly productive, diverse, and culturally unique Federal waters. As a result of its varied seafloor topography, oceanographic conditions, and high primary productivity, Stellwagen Bank NMS is utilized by diverse assemblages of seabirds, marine mammals, invertebrates, and fish species, as well as containing a number of maritime heritage resources. Furthermore, it is a region of cultural significance, highlighted by the recent discovery of several historic shipwrecks. Officially designated in 1992, Stellwagen Bank became the Nation’s twelfth National Marine Sanctuary in order to protect these and other unique biological, geological, oceanographic, and cultural features of the region. The Stellwagen Bank NMS is in the midst of its first management plan review since designation. The management plan review process, required by law, is designed to evaluate, enhance, and guide the development of future research efforts, education and outreach, and the management approaches used by Sanctuaries. Given the ecological and physical complexity of Stellwagen Bank NMS, burgeoning anthropogenic impacts to the region, and competing human and biological uses, the review process was challenged to assimilate and analyze the wealth of existing scientific knowledge in a framework which could enhance management decision-making. Unquestionably, the Gulf of Maine, Massachusetts Bay, and Stellwagen Bank-proper are extremely well studied systems, and in many regards, the scientific information available greatly exceeds that which is available for other Sanctuaries. However, the propensity of scientific information reinforces the need to utilize a comprehensive analytical approach to synthesize and explore linkages between disparate information on physical, biological, and chemical processes, while identifying topics needing further study. Given this requirement, a partnership was established between NOAA’s National Marine Sanctuary Program (NMSP) and the National Centers for Coastal Ocean Science (NCCOS) so as to leverage existing NOAA technical expertise to assist the Sanctuary in developing additional ecological assessment products which would benefit the management plan review process.