21 resultados para Cape Ann

em Aquatic Commons


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary: This cruise report is a summary of a field survey conducted within the Stellwagen Bank National Marine Sanctuary (SBNMS), located between Cape Cod and Cape Ann at the mouth of Massachusetts Bay. The survey was conducted June 14 – June 21, 2008 on NOAA Ship NANCY FOSTER Cruise NF-08-09-CCEHBR. Multiple indicators of ecological condition and human dimensions were sampled synoptically at each of 30 stations throughout SBNMS using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. In addition to the fish samples that were collected for analysis of chemical contaminants relative to human-health consumption limits, other human-dimension indicators were sampled as well including presence or absence of fishing gear, vessels, surface trash, marine mammals, and noxious sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout SBNMS, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing a few preliminary results and observations are reported here. A final report will be completed once all data have been processed. The results are anticipated to be of value in supporting goals of the SBNMS and National Marine Sanctuary Program aimed at the characterization, protection, and management of sanctuary resources (pursuant to the National Marine Sanctuary Reauthorization Act) as well as a new priority of NCCOS and NOAA to apply Ecosystem Based approaches to the Management of coastal resources (EBM) through Integrated Ecosystem Assessments (IEAs) conducted in various coastal regions of the U.S. including the Northeast Atlantic continental shelf. This was a multi-disciplinary partnership effort made possible by scientists from the following organizations:  NOAA, National Ocean Service (NOS), National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Environmental Health and Biomolecular Research (CCEHBR), Charleston, SC.  U.S. Environmental Protection Agency (EPA), National Health and Environmental Effects Research Laboratory (NHEERL), Atlantic Ecology Division (GED), Narragansett, RI.  U.S. Environmental Protection Agency (EPA), National Health and Environmental Effects Research Laboratory (NHEERL), Gulf Ecology Division (GED), Gulf Breeze, FL.  U.S. Geological Survey (USGS), National Wetlands Research Center, Gulf Breeze Project Office, Gulf Breeze, FL.  NOAA, Office of Marine and Aviation Operations (OMAO), NOAA ship Nancy Foster. (31pp) (PDF contains 58 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During 1995 and 1996, the National Marine Fisheries Service (NMFS), conducted pilot studies to develop survey methodology and a sampling strategy for assessment of coastal shark populations in the Gulf of Mexico and western North Atlantic. Longline gear similar to that used in the commercial shark fishery was deployed at randomly selected stations within three depth strata per 60 nautical mile gridf rom Brownsville, Tex. to Cape Ann, Mass. The survey methodology and gear design used in these surveys proved effective for capturing many of the small and large coastal sharks regulated under the auspices of the 1993 Fisheries Management Plan (FMP) for Sharks oft he Atlantic Ocean. Shark catch rates, species composition, and relative abundance documented in these pilot surveys were similar to those reported from observer programs monitoring commercial activities. During 78 survey days, 269 bottom longline sets were completed with 879 sharks captured.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mission of NOAA’s National Marine Sanctuary Program (NMSP) is to serve as the trustee for a system of marine protected areas, to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy while facilitating compatible uses. Since 1972, thirteen National Marine Sanctuaries, representing a wide variety of ocean environments, have been established, each with management goals tuned to their unique diversity. Extending from Cape Ann to Cape Cod across the mouth of Massachusetts Bay, Stellwagen Bank National Marine Sanctuary (NMS) encompasses 2,181 square kilometers of highly productive, diverse, and culturally unique Federal waters. As a result of its varied seafloor topography, oceanographic conditions, and high primary productivity, Stellwagen Bank NMS is utilized by diverse assemblages of seabirds, marine mammals, invertebrates, and fish species, as well as containing a number of maritime heritage resources. Furthermore, it is a region of cultural significance, highlighted by the recent discovery of several historic shipwrecks. Officially designated in 1992, Stellwagen Bank became the Nation’s twelfth National Marine Sanctuary in order to protect these and other unique biological, geological, oceanographic, and cultural features of the region. The Stellwagen Bank NMS is in the midst of its first management plan review since designation. The management plan review process, required by law, is designed to evaluate, enhance, and guide the development of future research efforts, education and outreach, and the management approaches used by Sanctuaries. Given the ecological and physical complexity of Stellwagen Bank NMS, burgeoning anthropogenic impacts to the region, and competing human and biological uses, the review process was challenged to assimilate and analyze the wealth of existing scientific knowledge in a framework which could enhance management decision-making. Unquestionably, the Gulf of Maine, Massachusetts Bay, and Stellwagen Bank-proper are extremely well studied systems, and in many regards, the scientific information available greatly exceeds that which is available for other Sanctuaries. However, the propensity of scientific information reinforces the need to utilize a comprehensive analytical approach to synthesize and explore linkages between disparate information on physical, biological, and chemical processes, while identifying topics needing further study. Given this requirement, a partnership was established between NOAA’s National Marine Sanctuary Program (NMSP) and the National Centers for Coastal Ocean Science (NCCOS) so as to leverage existing NOAA technical expertise to assist the Sanctuary in developing additional ecological assessment products which would benefit the management plan review process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In June 2008, the NOAA National Ocean Service (NOS), in conjunction with the EPA National Health and Environmental Effects Laboratory (NHEERL), conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters within the boundaries of Stellwagen Bank National Marine Sanctuary (SBNMS). The sanctuary lies approximately 20 nautical miles east of Boston, MA in the southwest Gulf of Maine between Cape Ann and Cape Cod and encompassing 638 square nautical miles (2,181 km2). A total of 30 stations were targeted for sampling using standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna, fish tissue contaminant levels). Depths ranged from 31 – 137 m throughout the study area. About 76 % of the area had sediments composed of sands (< 20 % silt-clay), 17 % of the area was composed of intermediate muddy sands (20 – 80 % silt-clay), and 7 % of the sampled area consisted of mud (> 80 % siltclay). About 70 % of the area (represented by 21 sites) had sediment total organic carbon (TOC) concentrations < 5 mg/g and all but one site (located in Stellwagen Basin) had levels of TOC < 20 mg/g, which is well below the range potentially harmful to benthic fauna (> 50 mg/g). Surface salinities ranged from 30.6 – 31.5 psu, with the majority of the study region (approximately 80 % of the area) having surface salinities between 30.8 and 31.4 psu. Bottom salinities varied between 32.1 and 32.5 psu, with bottom salinities at all sites having values above the range of surface salinities. Surface-water temperatures varied between 12.1 and 16.8 ºC, while near-bottom waters ranged in temperature from 4.4 – 6.2 ºC. An index of density stratification (Δσt) indicated that the waters of SBNMS were stratified at the time of sampling. Values of Δσt at 29 of the 30 sites sampled in this study (96.7 % of the study area) varied from 2.1 – 3.2, which is within the range considered to be indicative of strong vertical stratification (Δσt > 2) and typical of the western Gulf of Maine in summer. Levels of dissolved oxygen (DO) were confined to a fairly narrow range in surface (8.8 – 10.4 mg/L) and bottom (8.5 – 9.6 mg/L) waters throughout the survey area. These levels are within the range considered indicative of good water quality (> 5 mg/L) with respect to DO. None of these waters had DO at low levels (< 2 mg/L) potentially harmful to benthic fauna and fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-native, invasive genotype of the common reed ( Phragmites australis (Cav.) Trin. ex Steudel) has become a problem of significant proportions throughout wetlands of North America (Saltonstall 2001). Although attempts to suppress or eradicate Phragmites have utilized a wide variety of techniques, herbicides have generally been most effective (Marks et al. 1994). In the spring, mid-summer, and late summer of 2003, we attempted to opportunistically control Phragmites in five freshwater ponds within Cape Cod National Seashore (CCNS) by repeatedly severing stems underwater, at ground level.(PDF has 4 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cape Canaveral, Florida, marine ecosystem is unique. There are complex current and temperature regimes that form a faunal transition zone between Atlantic tropical and subtropical waters. This zone is rich faunistically and supports large commercial fISheries for fish, scallops, and shrimp. Canaveral is also unique because it has large numbers of sea turtles year-round, this turtle aggregation exhibiting patterned seasonal changes in numbers, size frequency, and sex ratio. Additionally, a significant portion of this turtle aggregation hibernates in the Canaveral ship channel, a phenomenon rare in marine turtle populations. The Cape Canaveral area has the largest year-round concentration of sea turtles in the United States. However, the ship channel is periodically dredged by the U.S. Army Corps of Engineers in order to keep Port Canaveral open to U.S. Navy vessels, and preliminary surveys showed that many sea turtles were incidentally killed during dredging operations. In order for the Corps of Engineers to fulfill its defense dredging responsibilities, and comply with the Endangered Species Act of 1973, an interagency Sea Turtle Task Force was formed to investigate methods of reducing turtle mortalities. This Task Force promptly implemented a sea turtle research plan to determine seasonal abundance, movement patterns, sex ratios, size frequencies, and other biological parameters necessary to help mitigate dredging conflicts in the channel. The Cape Canaveral Sea Turtle Workshop is a cooperative effort to comprehensively present research results of these important studies. I gratefully acknowledge the support of everyone involved in this Workshop, particularly the anonymous team of referees who painstakingly reviewed the manuscripts. The cover illustration was drawn by Jack C. Javech. (PDF file contains 86 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Partner University of Michigan convened a workshop on the Applications of Drifting Buoy Technologies for Coastal Watershed and Ecosystem Modeling in Ann Arbor, Michigan on June 5 to 7,2005. The objectives of the workshop were to: (1) educate potential users (managers and scientists) about the current capabilities and uses of drifting buoy technologies; (2) provide an opportunity for users (managers and scientists) to experience first hand the deployment and retrieval of various drifting buoys, as well as experience the capabilities of the buoys' technologies; (3) engage manufacturers with scientists and managers in discussions on drifting buoys' capabilities and their requirements to promote further applications of these systems; (4) promote a dialogue about realistic advantages and limitations of current drifting buoy technologies; and (5) develop a set of key recommendations for advancing both the capabilities and uses of drifting buoy technologies for coastal watershed and ecosystem modeling. To achieve these goals, representatives from research, academia, industry, and resource management were invited to participate in this workshop. Attendees obtained "hands on" experience as they participated in the deployment and retrieval of various drifting buoy systems on Big Portage Lake, a 644 acre lake northwest of Ann Arbor. Working groups then convened for discussions on current commercial usages and environmental monitoring approaches including; user requirements for drifting buoys, current status of drifting buoy systems and enabling technologies, and the challenges and strategies for bringing new drifting buoys "on-line". The following general recommendations were made to: 1). organize a testing program of drifting buoys for marketing their capabilities to resource managers and users. 2). develop a fact sheet to highlight the utility of drifting buoys. 3). facilitate technology transfer for advancements in drifter buoys that may be occurring through military funding and development in order to enhance their technical capability for environmental applications. (pdf contains 18 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) Workshop "Applications of in situ Fluorometers in Nearshore Waters" was held in Cape Elizabeth, Maine, February 2-4,2005, with sponsorship by the Gulf of Maine Ocean Observing System (GoMOOS), one of the ACT partner organization. The purpose of the workshop was to explore recent trends in fluorometry as it relates to resource management applications in nearshore environments. Participants included representatives from state and federal environmental management agencies as well as research institutions, many of whom are currently using this technology in their research and management applications. Manufacturers and developers of fluorometric measuring systems also attended the meeting. The Workshop attendees discussed the historical and present uses of fluorometry technology and identified the great potential for its use by coastal managers to fulfill their regulatory and management objectives. Participants also identified some of the challenges associated with the correct use of Fluorometers to estimate biomass and the rate of primary productivity. The Workshop concluded that in order to expand the existing use of fluorometers in both academic and resource management disciplines, several issues concerning data collection, instrument calibration, and data interpretation needed to be addressed. Participants identified twelve recommendations, the top five of which are listed below: Recommendations 1) Develop a "Guide" that describes the most important aspects of fluorescence measurements. This guide should be written by an expert party, with both research and industry input, and should be distributed by all manufacturers with their instrumentation. The guide should also be made available on the ACT website as well as those of other relevant organizations. The guide should include discussions on the following topics: The benefits of using fluorometers in research and resource management applications; What fluorometers can and cannot provide in terms of measurements; The necessary assumptions required before applying fluorometry; Characterization and calibration of fluorometers; (pdf contains 32 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cape Cod Bay (Massachusetts) is the only known winter and early spring feeding area for concentrations of the endangered North Atlantic right whale (Eubalaena glacialis) population. During January–May, 1998–2002, 167 aerial surveys were conducted (66,466 km of total survey effort), providing a complete representation of the spatiotemporal distribution of right whales in the bay during winter and spring. A total of 1553 right whales were sighted; some of these sightings were multiple sightings of the same individuals. Right whale distribution and relative abundance patterns were quantified as sightings per unit of effort (SPUE) and partitioned into 103 23-km2 cells and 12 2-week periods. Significant interannual variations in mean SPUE and timing of SPUE maxima were likely due to physically forced changes in available food resources. The area of greatest SPUE expanded and contracted during the season but its center remained in the eastern bay. Most cells with SPUE>0 were inside the federal critical habitat (CH) and this finding gave evidence of the need for management measures within CH boundaries to reduce anthropogenic mortality from vessel strikes and entanglement. There was significant within-season SPUE variability: low in December−January, increasing to a maximum in late February−early April, and declining to zero in May; and these results provide support for management measures from 1 January

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endoparasitic helminths were inventoried in 483 American plaice (Hippoglossoides platessoides) collected from the southern Gulf of St. Lawrence, NAFO (North Atlantic Fisheries Organization) division 4T, and Cape Breton Shelf (NAFO subdivision 4Vn) in September 2004 and May 2003, respectively. Forward stepwise discriminant function analysis (DFA) of the 4T samples indicated that abundances of the acanthocephalans Echinorhynchus gadi and Corynosoma strumosum were significant in the classification of plaice to western or eastern 4T. Cross validation yielded a correct classification rate of 79% overall, thereby supporting the findings of earlier mark-recapture studies which have indicated that 4T plaice comprise two discrete stocks: a western and an eastern stock. Further analyses including 4Vn samples, however, indicated that endoparasitic helminths may have little value as tags in the classification of plaice overwintering in Laurentian Channel waters of the Cabot Strait and Cape Breton Shelf, where mixing of 4T and 4Vn fish may occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-framed traps covered with polyethylene mesh used in the fishery for the South African Cape rock lobster (Jasus lalandii) incidentally capture large numbers of undersize (<75 mm CL) specimens. Air-exposure, handling, and release procedures affect captured rock lobsters and reduce the productivity of the stock, which is heavily fished. Optimally, traps should retain legalsize rock lobsters and allow sublegal animals to escape before traps are hauled. Escapement, based on lobster morphometric measurements, through meshes of 62 mm, 75 mm, and 100 mm was investigated theoretically under controlled conditions in an aquarium, and during field trials. SELECT models were used to model escapement, wherever appropriate. Size-selectivity curves based on the logistic model fitted the aquarium and field data better than asymmetrical Richards curves. The lobster length at 50% retention (L50) on the escapement curve for 100-mm mesh in the aquarium (75.5 mm CL) approximated the minimum legal size (75 mm CL); however estimates of L50 increased to 77.4 mm in field trials where trapentrances were sealed, and to 82.2 mm where trap-entrances were open. Therfore, rock lobsters that cannot escape through the mesh of sealed field traps do so through the trap entrance of open traps. By contrast, the wider selection range and lower L25 of field, compared to aquarium, trials (SR = 8.2 mm vs. 2.6 mm; L25 =73.4 mm vs. 74.1 mm), indicate that small lobsters that should be able to escape from 100-mm mesh traps do not always do so. Escapement from 62-mm mesh traps with open entrance funnels increased by 40−60% over sealed traps. The findings of this study with a known size distribution, are related to those of a recent indirect (comparative) study for the same species, and implications for trap surveys, commercial catch rates, and ghost fishing are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fisheries agreements with the European Community (EC) are an important component of the fisheries sector in Cape Verde and São Tomé e Príncipe, constituting today a key source of income for the respective fisheries administration. In spite of this, and of the fact that these agreements have been renewed several times over the past decades, challenges remain in domains such as control and communication of fishing activities, follow-up of financial counterparts, and integration of European fleets’ operations with the Cape Verdean and Santomean economies. This paper analyzes the EC fisheries agreements with Cape Verde and São Tomé e Príncipe in terms of those domains, considering both the contents of the agreements and their practical implementation. The fisheries sector in each of these countries is reviewed, as are some of the fundamentals and criticisms of EC fisheries agreements. It is argued that the agreements with Cape Verde and São Tomé e Príncipe will not live up to the stated objectives of sustainability and responsibility in fisheries until improvements are made to the control of EC vessels, the follow-up of funds paid by the EC, and the size and diversity of benefits accruing to the fisheries and related sectors in the two countries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

South African (Cape) fur seals, Arctocephalus pusillus pusillus, interact with the South African trawl fisheries-offshore demersal, inshore demersal, and midwater fisheries. These interactions take thef ollowing forms: Seals take or damage netted fish, on particular vessels they become caught in the propeller, seals drown in the nets, live seals come aboard and may be killed. Except in specific cases of seals damaging particular trawler propellers, interactions result in little cost to the offshore and midwater trawl fisheries. For the inshore fishery, seals damage fish in the net at an estimated cost in excess of R69, 728 (US$18,827) per year, but this is negligible (0.3%) in terms ofthe value of the fishery. Seal mortality is mainly caused by drowning in trawl nets and ranges from 2,524 to 3,636 seals of both sexes per year. Between 312 and 567 seals are deliberately killed annually, but this most likely takes place only when caught and they enter the area below deck, where they are difficult to remove, and pose a potential threat to crew safety. Overall, seal mortality during trawling operations is negligible (0.4-0.6%) in terms of the feeding population of seals in South Africa.