7 resultados para Calbuco Volcano

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Submarine Landslides: An Introduction 1 By RIo Lee, W.C. Schwab, and J.S. Booth U.S. Atlantic Continental Slope Landslides: Their Distribution, General Anributes, and Implications 14 By J.S. Booth, D.W. O'Leary, Peter Popenoe, and W.W. Danforth Submarine Mass Movement, a Formative Process of Passive Continental Margins: The Munson-Nygren Landslide Complex and the Southeast New England Landslide Complex 23 By D.W. O'Leary The Cape Fear Landslide: Slope Failure Associated with Salt Diapirism and Gas Hydrate Decomposition 40 By Peter Popenoe, E.A. Schmuck, and W.P. Dillon Ancient Crustal Fractures Control the Location and Size of Collapsed Blocks at the Blake Escarpment, East of Florida 54 By W.P. Dillon, J.S. Risch, K.M. Scanlon, P.C. Valentine, and Q.J. Huggett Tectonic and Stratigraphic Control on a Giant Submarine Slope Failure: Puerto Rico Insular Slope 60 By W.C. Schwab, W.W. Danforth, and K.M. Scanlon Slope Failure of Carbonate Sediment on the West Florida Slope 69 By D.C. Twichell, P.C. Valentine, and L.M. Parson Slope Failures in an Area of High Sedimentation Rate: Offshore Mississippi River Delta 79 By J.M. Coleman, D.B. Prior, L.E. Garrison, and H.J. Lee Salt Tectonics and Slope Failure in an Area of Salt Domes in the Northwestern Gulf of Mexico 92 By B.A. McGregor, R.G. Rothwell, N.H. Kenyon, and D.C. Twichell Slope Stability in Regions 01 Sea-Floor Gas Hydrate: Beaufort Sea Continental Slope 97 By R.E. Kayen and H.J. Lee Mass Movement Related to Large Submarine Canyons Along the Beringian Margin, Alaska 104 By P.R. Carlson, H.A. Karl, B.D. Edwards, J.V. Gardner, and R. Hall Comparison of Tectonic and Stratigraphic Control of Submarine Landslides on the Kodiak Upper Continental Slope, Alaska 117 By M.A. Hampton Submarine Landslides That Had a Significant Impact on Man and His Activities: Seward and Valdez, Alaska 123 By M.A. Hampton, R.W. Lemke, and H.W. Coulter Processes Controlling the Style of Mass Movement in Glaciomarine Sediment: Northeastern Gulf of Alaska 135 By W.C. Schwab and H.J. Lee Contents V VI Contents Liquefaction of Continental Shelf Sediment: The Northern California Earthquake of 1980 143 By M.E. Field A Submarine Landslide Associated with Shallow Sea-Floor Gas and Gas Hydrates off Northern California 151 By M.E. Field and J.H. Barber, Jr. Sur Submarine Landslide, a Deep-Water Sediment Slope Failure 158 By C.E. Gutmacher and W.R. Normark Seismically Induced Mudflow in Santa Barbara Basin, California 167 By B.D. Edwards, H.J. Lee, and M.E. Field Submarine Landslides in a Basin and Ridge Setting, Southern California 176 By M.E. Field and B.D. Edwards Giant Volcano-Related Landslides and the Development of the Hawaiian Islands 184 By W.R. Normark, J.G. Moore, and M.E. Torresan Submarine Slope Failures Initiated by Hurricane Iwa, Kahe Point, Oahu, Hawaii 197 By W.R. Normark, Pat Wilde, J.F. Campbell, T.E. Chase, and Bruce Tsutsui (PDF contains 210 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecología de los Chivos Ferales (Capra hircus) en el Volcán Alcedo. Ecology of Feral Goats (Capra hircus) on Alcedo Volcano. Pepino War, 1992.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new populations and the host plant of the rarely encountered Galapagos endemic moth Epiplema becki were found on Isabela Island, on Wolf and Sierra Negra volcanoes, with a sighting on Darwin Volcano. The host plant is the native Duranta dombeyana (Verbenaceae). The habitats where all known specimens were collected were Scalesia forest with Duranta bushes. To ensure the conservation of E. becki, we recommend control of introduced species in its habitat. CDF Contribution Number 1010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Historical sources of the late-18th and 19th centuries were searched for information on coastal weather conditions in Southern California. Relatively calm winters until 1828 were followed by unusually stormy winters from about 1829 to 1839. Later periods were again predominantly calm, with notable exceptions related to the ENSO events of 1845 and 1878. Following decreases through the stormy 1830s, sizes of kelp forests appear to have rebounded in the 1840s. ENSO occurrences and eruption of the volcano Cosiguina in 1835 are likely causes for changing wind patterns. Our results link the unique AD 1840 Macoma leptonoidea pelecypod shell layer in laminated Santa Barbara Basin sediment ("Macoma event") to abruptly changing oceanographic and weather patterns.