9 resultados para CHLOROPHYLL-A

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broad scale features in the horizontal, vertical, and seasonal distribution of phytoplankton chlorophyll a on the northeast U.S. continental shelf are described based on 57,088 measurements made during 78 oceanographic surveys from 1977 through 1988. Highest mean water column chlorophyll concentration (Chlw,) is usually observed in nearshore areas adjacent to the mouths of the estuaries in the Middle Atlantic Bight (MAB), over the shallow water on Georges Bank, and a small area sampled along the southeast edge of Nantucket Shoals. Lowest Chlw «0.125 ug l-1) is usually restricted to the most seaward stations sampled along the shelf-break and the central deep waters in the Gulf of Maine. There is at least a twofold seasonal variation in phytoplankton biomass in all areas, with highest phytoplankton concentrations (m3) and highest integrated standing stocks (m2) occurring during the winter-spring (WS) bloom, and the lowest during summer, when vertical density stratification is maximal. In most regions, a secondary phytoplankton biomass pulse is evident during convective destratification in fall, usually in October. Fall bloom in some areas of Georges Bank approaches the magnitude of the WS-bloom, but Georges Bank and Middle Atlantic Bight fall blooms are clearly subordinate to WS-blooms. Measurements of chlorophyll in two size-fractions of the phytoplankton, netplankton (>20 um) and nanoplankton «20 um), revealed that the smaller nanoplankton are responsible for most of the phytoplankton biomass on the northeast U.S. shelf. Netplankton tend to be more abundant in nearshore areas of the MAB and shallow water on Georges Bank, where chlorophyll a is usually high; nanoplankton dominate deeper water at the shelf-break and deep water in the Gulf of Maine, where Chlw is usually low. As a general rule, the percent of phytoplankton in the netplankton size-fraction increases with increasing depth below surface and decreases proceeding offshore. There are distinct seasonal and regional patterns in the vertical distribution of chlorophyll a and percent netplankton, as revealed in composite vertical profiles of chlorophyll a constructed for 11 layers of the water column. Subsurface chlorophyll a maxima are ubiquitous during summer in stratified water. Chlorophyll a in the subsurface maximum layer is generally 2-8 times the concentration in the overlying and underlying water and approaches 50 to 75% of the levels observed in surface water during WS-bloom. The distribution of the ratio of the subsurface maximum chlorophyll a to surface chlorophyll a (SSR) during summer parallels the shelfwide pattern for stability, indexed as the difference in density (sigma-t) between 40 m and surface (stability 40. The weakest stability and lowest SSR's are found in shallow tidally-mixed water on Georges Bank; the greatest stability and highest SSR's (8-12:1) are along the mid and outer MAB shelf, over the winter residual water known as the "cold band." On Georges Bank, the distribution of SSR and the stability40 are roughly congruent with the pattern for maximum surface tidal current velocity, with values above 50 cms-1 defining SSR's less than 2:1 and the well-mixed area. Physical factors (bathymetry, vertical mixing by strong tidal currents, and seasonal and regional differences in the intensity and duration of vertical stratification) appear to explain much of the variability in phytoplankton chlorophyll a throughout this ecosystem. (PDF file contains 126 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: Between 1 October and 17 December 1955 investigations of the physical, chemical and biological oceanography of the Eastern Pacific Ocean in a region bounded approximately by 30° N. latitude, 9° S. latitude, 120° W. longitude and the mainland coast were conducted from the vessels Horizon and Spencer F. Baird of the Scripps Institution of Oceanography of the University of California. These were part of a cooperative operation, designated for convenience by the code name "Eastropic," in which a vessel of the U. S. Fish and Wildlife Service worked, during this same period, further west and a vessel of the Peruvian Navy worked further south, offshore from Peru. A vessel of the California State Fisheries Laboratory also conducted certain sub-surface tuna fishing operations and other studies in the same general region as the Scripps vessels. In addition to carrying out a number of special studies related to particular oceanographic features, the Scripps vessels occupied a considerable number of hydrographic stations. The locations of these stations, at each of which were made net-hauls for zooplankton, are shown in Figure 4 and Tables 2 and 3. At some of the hydrographic stations, and in Some places between stations, there were made from the Spencer F. Baird measurements of chlorophyll "a" and of primary production (by the C14 technique), both in situ and in a shipboard incubator. The purpose of this paper is to report on the results of these biological observations. SPANISH: Entre el 1° de octubre y el 17 de diciembre de 1955, a bordo de los barcos Horizon y Spencer F. Baird) de la Institución Scripps de Oceanografía de la Universidad de California, se hicieron investigaciones sobre la oceanografía física, química y biológica del Océano Pacífico Oriental, en una región limitada aproximadamente por los 30° N. de latitud, 9° S. de latitud, 120° O. de longitud y la costa continental. Estas investigaciones fueron parte de una operación que se realizó cooperativamente y a la que se convino darle el nombre codificado de "Eastropic". En ella, durante el mismo período, una embarcación del Servicio de Pesca y Vida Silvestre de los Estados Unidos (U. S. Fish and Wildlife Service) trabajó más hacia el oeste, y un barco de la armada peruana más hacia el sur, frente a la costa del Perú. También colaboró una nave del Laboratorio de Pesquerías del Estado de California (California State Fisheries Laboratory), realizando algunas operaciones de pesca de atún en aguas subsuperficiales, y otros estudios en la misma región general que recorrieron las embarcaciones de Scripps. Además de efectuar estudios especiales relacionados con las caracteristicas oceanográficas particulares de la región, las naves de Scripps establecieron un buen número de estaciones hidrográficas. La localización de estas estaciones se indica en la Figura 4 y en las Tablas 2 y 3; en cada una de ellas se hicieron rastreos con redes planctónicas para recoger muestras de zooplancton. En algunas de las estaciones hidrográficas, así como en algunos lugares entre estaciones, en el Spencer F. Baird se hicieron mediciones de la clorofila "a" y de la producción primaria (mediante la técnica del C14), tanto in situ como en una incubadora instalada a bordo. El propósito del presente trabajo es dar a conocer los resultados de estas observaciones biológicas. (PDF contains 44 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The original method, proposed by Yentsch (1957), of determination of chlorophyll directly in the cells, attracts attention by its simplicity. In order to measure the content of chlorophyll by this method, a determined volume of suspension of algae is filtered through a membrane filter. The latter is dried a little, clarified by immersion oil, clamped between two glasses, and spectrophotometrized. Extinction is read off at , wavelengths equal to 670 millimicrons (around the maximum absorption of chlorophyll a in the cell) and 750 millimicrons (correction for non- specific absorption and dispersion of light by particles of the preparation). The method of Yentsch was employed by the authors for determination of chlorophyll-a in samples of phytoplankton. They conclude that in spite of the simplicity and convenience of determination the method must be applied sufficiently carefully. It is more suitable for analysis of cultures of algae, where, non-specific absorption of light is insignificant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): The recent changes in phytoplankton production and community composition within the Suisun Bay and Sacramento-San Joaquin Delta may be related to climate. Chlorophyll a concentration, decreased by 42% (spring-summer) and 29% (fall) between 1972 through 1976 and 1977 through 1981. The decrease in biomass was characterized by a shift in phytoplankton community dominance from Skeletonema spp., Cyclotella spp. and Coscinodiscus spp. to Melosira granulata. The possible influence of climate on phytoplankton abundance was suggested by multivariate statistical analyses that demonstrated an association between changes in phytoplankton community composition and abundance between 1975 and 1982 and the climate related variables wind velocity, precipitation, river flow and water temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project provides a framework for developing the capabilities of using satellite and related oceanographic and climatological data to improve environmental monitoring and characterization of physical, biological, and water quality parameters in the National Marine Sanctuaries (NMS). The project sought to: 1) assemble satellite imagery datasets in order to extract spatially explicit time series information on temperature, chlorophyll, and light availability for the Cordell Bank, Gulf of the Farallones, and Monterey Bay National Marine Sanctuaries. 2) perform preliminary analyses with these data in order to identify seasonal, annual, inter-annual, and event-driven patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time series measurements of dimethylsulfide (DMS), particulate dimethylsulfoniopropionate (DMSPp), chlorophyll a (chl a), algal pigments, major nutrients, and the potential activity of DMSP lyase enzymes were made over a 2 yr period (6 March 2003 to 28 March 2005) near the mouth of the shallow, tidally mixed Newport River estuary, North Carolina, USA. DMSPp had a mean of 43 ± 20 nM (range = 10.5 to 141 nM, n = 85) and DMS a mean of 2.7 ± 1.2 nM (range = 0.9 to 7.0 nM). The mean DMS in Gallants Channel was not significantly different from that measured in the Sargasso Sea near Bermuda during a previous 3 yr time series study (2.4 ± 1.5 nM), despite there being a 43-fold higher mean chl a concentration (4.9 ± 2.4 µg l–1) at the coastal site. In winter, DMS was low and chl a was high in the surface waters of the Sargasso Sea, while the opposite was true at the coastal site. Consequently, DMS concentrations per unit algal chl a were on average 170 times higher in the Sargasso Sea than at the coastal site during the summer, but only 7 times higher during the winter. The much higher chl a-specific DMS concentrations at the oceanic site during the summer were linked to higher ratios of intracellular DMSP substrate and DMSP lyase enzyme per unit chl a. These differences in turn appear to be linked to large differences in nutrient concentrations and solar UV stress at the 2 sites and to associated differences in the composition of algal assemblages and physiological acclimation of algal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term changes in chlorophyll production were predicted from environmental variables for the Sacramento and San Joaquin rivers and Suisun Bay using Box-Jenkins transfer function models. Data used for the analyses were collected semimonthly or monthly between 1971 and 1987. Transfer function models developed to describe changes in chlorophyll production over time as a function of environmental variables were characterized by lagged responses and described between 39 and 51 percent of the data variation. Significant correlations between environmental variables and the California climate index (CA SLP) were used to develop a conceptual model of the link between regional climate and estuarine production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The average integrated chlorophyll a values for a 30-m deep surface layer in the north Arabian Sea bordering Pakistan ranged from negligible amounts to as high as 0.53μg chl. a 1ˉ¹(15.9mg mˉ²) during the period January 20, 1977 to June 4, 1977. The values, in general, decreased offshore except for the westernmost part of the Makran shelf, where unexpectedly high values were recorded over deep water. Seasonal distribution showed very high values in January (northeast monsoon season) which, with a few exceptions, gradually decreased to very low values in May, and then increased in June. The January peak may be related to winter cooling of surface waters resulting in convection and the June peak to the onset of southwest monsoon season in May. Coastal water shallower than 30m showed no seasonality and were often sites of intense phytoplankton blooms.