2 resultados para C-14 Data

em Aquatic Commons


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ontogeny of haematopoiesis in the perciform fish, spot Leiostomus xanthurus, differed from that reported as the norm for fishes, as exemplified by the cypriniform zebrafish Danio rerio, and observed in the batrachoidiform oyster toadfish Opsanus tau. Erythropoiesis in spot was first evident in the head kidney of yolk-sac larvae 3 days after hatching (DAH). No embryonic intermediate cell mass (ICM) of primitive stem cells or blood islands on the yolk were apparent within embryos. Erythrocytes were first evident in circulation near the completion of yolk absorption, c. 5 DAH, when larvae were c. 20 mm notochord length (LN). Erythrocyte abundance increased rapidly with larval development for c. 14 to 16 DAH, then became highly variable following changes in cardiac chamber morphology and volume. Erythrocytic haemoglobin (Hb) was not detected within whole larvae until they were 12 DAH or c. 31 mm LN, well after yolk and oil-globule absorption. The Hb was not quantified until larvae were >47 DAH or >7 mm standard length. The delayed appearance of erythrocytes and Hb in spot was similar to that reported for other marine fishes with small embryos and larvae. In oyster toadfish, a marine teleost that exhibits large embryos and larvae, the ICM and Hb were first evident in two bilateral slips of erythropoietic tissue in the embryos, c. 5 days after fertilization. Soon thereafter, erythrocytes were evident in the heart, and peripheral and vitelline circulation. Initial haematopoiesis in oyster toadfish conformed with that described for zebrafish. While the genes that code for the development of haematopoiesis are conserved among vertebrates, gene expression lacks phylogenetic pattern among fishes and appears to conform more closely with phenotypic expression related to physiological and ecological influences of overall body size and environmental oxygen availability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data on proximate composition, total volatile bases, total non-protein nitrogen and bacterial quality of commercial samples of Indian fish meal are presented in this communication. The samples vary very much in quality depending on the type of raw material used and method of processing followed. The data are discussed in relation to the Indian standard Specifications for fish meal as livestock feed.