6 resultados para Budget
em Aquatic Commons
Resumo:
The framework of sediment budget concepts provides a formalized procedure to account for the various components of sediment flux and the changes of volume that occur within a given region. Sediment budget methodology can be useful in a number of coastal engineering and research applications, including: inferring the amount of onshore sediment transport for a nearshore system that contains an "excess of sediment", determining sediment deficits to downdrift beaches as a result of engineering works at navigational entrances, evaluating the performance of a beach nourishment project, inferring the distribution of longshore sediment transport across the surf zone, etc. This chapter reviews briefly the governing equations for sediment budget calculations, considers various measurement and other bases for determining the sediment flux components necessary to apply the sediment budget concept and finally for illustration purposes, applies the sediment budget concept to several examples. (PDF contains 52 pages.)
Resumo:
A progress report on research undertaken on the chemical budget of a lake, outlining the importance of nitrogen and phosphorus in governing the production of life in freshwater. The report uses the Rivers Brathay and Leven, which flow into Windermere, as examples. The report also refers to the Rivers Rothay, Troutbeck and Cunsey. A table is including which shows the monthly average nitrate content (mg per litre) of the River Brathey and River Leven for 1937 into 1938. The report also includes a figure showing Windermere lake levels, discharge and rainfall during 1937. It also briefly considers possible anthropogenic influences on water quality.
Resumo:
This report outlines the approaches for estimating the carbon budget for the United States, a data rich subcontinental area, and presents an overview of problems encountered and preliminary results obtained.
Resumo:
In this study heat budget components and momentum flux for August and January 1992 over the north Arabian Sea are computed. The marine meteorological data measured on board during the cruises of PAK-US joint project (NASEER) are used for the computation. Significant differences were found in the heat budget components as well as in the momentum flux during different monsoon periods over the north Arabian Sea. The latent heat flux was always positive and attributed to the large vapour pressure gradient. The computed moisture and latent heat fluxes in January were higher than August The highest value of latent heat flux 309 W/m2 at station 8 was evaluated. These higher latent heat fluxes were due to the large vapour pressure gradient, air-sea temperature difference, the wind speed, and the prevailing wind direction (from north and northeast). Negative values of sensible heat fluxes in both seasons indicate that the heat transfer was from the atmosphere to the ocean. The negative values of net heat gain indicate that the sea surface field became an energy sink: or the sea surface supplied more energy to the atmosphere than it received from it. Large variation in the momentum flux mainly attributed to the variation in the wind speed. Aerial averages of heat and momentum fluxes were also computed.
Resumo:
Based on the freshwater and seawater budgets, the mean in/out water fluxes as well as the monthly changes in freshwater content were determined in Lake Manzalah. About 6693 x 10^6m^3 of fresh and brackish water inflow to the lake annually through the main drains discharging into the southeastern basin. Allowances of precipitation (105.7 x 10^6m^3/y) and evaporation (1075 x 10^6m^3/y) yield a net runoff of 5723 x 10^6m^3/y. The average changes in the freshwater content (dF) of the lake was 547.0 x 10^6m^3 with the maximum i.e. 72.4 x 10^6m^3 in July. Using the quantity of inflowing and outflowing water through Boughaz El-Gamil (Lake-Sea connection), the change in water volume relative to sea level change was 549 x 10^6m^3/y. The sea-level height (dh) induced an average monthly change of 6.5 cm. Using the amount of freshwater discharge as well as the lake volume, the lake water is replaced every 48 days.