10 resultados para Brendan, Saint, the Voyager, ca. 483-577.
em Aquatic Commons
Resumo:
From the mid-1950's to the mid-1960's a series of quantitative surveys of the macrobenthic invertebrate fauna were conducted in the offshore New England region (Maine to Long Island, New York). The surveys were designed to 1) obtain measures of macrobenthic standing crop expressed in terms of density and biomass; 2) determine the taxonomic composition of the fauna (ca. 567 species); 3) map the general features of macrobenthic distribution; and 4) evaluate the fauna's relationships to water depth, bottom type, temperature range, and sediment organic carbon content. A total of 1,076 samples, ranging from 3 to 3,974 m in depth, were obtained and analyzed. The aggregate macrobenthic fauna consists of 44 major taxonomic groups (phyla, classes, orders). A striking fact is that only five of those groups (belonging to four phyla) account for over 80% of both total biomass and number of individuals of the macrobenthos. The five dominant groups are Bivalvia, Annelida, Amphipoda, Echninoidea, and Holothuroidea. Other salient features pertaining to the macrobenthos of the region are the following: substantial differences in quantity exist among different geographic subareas within the region, but with a general trend that both density and biomass increase from northeast to southwest; both density and biomass decrease with increasing depth; the composition of the bottom sediments significantly influences both the kind and quantity of macrobenthic invertebrates, the largest quantities of both measures of abundance occurring in the coarser grained sediments and diminishing with decreasing particle size; areas with marked seasonal changes in water temperature support an abundant and diverse fauna, whereas a uniform temperature regime is associated with a sparse, less diverse fauna; and no detectable trends are evident in the quantitative composition of the macrobenthos in relation to sediment organic carbon content. (PDF file contains 246 pages.)
Resumo:
Studies were undertaken to evaluate the quality changes in freshwater giant prawn, Macrobrachium rosenbergii during various storage conditions of handling and preservation and producing safe and quality products. The samples kept in ice immediately after catch with head-on and head-less condition were found to be acceptable for 6 days and 7 days, respectively. Delaying of icing considerably shortened the shelf-life. The pH value increased from 6.36 to 8.0 after 10 days in ice. The initial average TVB-N value of sample increased from below 10 mg/100 g to 25 mg/100 g with the lapse of storage period. The Ca++ ATPase activity in presence of 0.1M KCl slightly decreased at the end of 10 days of ice storage. Immediately after harvest, initial aerobic plate count (APC) was 2.88x10^6 CFU/g which gradually increased to 1.12x10^8 CFU/g after 6 days in ice storage and showed early signs of spoilage. Initial bacterial genera in the prawn iced at 0 hours were comprised of Coryneform (22.21 %), Bacillus (7.40%), Micrococcus (11.11 %), Achromobacter (48.14%), Flavobacterium/Cytophaga (7.40%), Pseudomonas (3.70%) and Aeromonas (3.70%). During ice storage Coryneforms and Bacillus were always dominating along with less prominent ones - Micrococcus, Achromobacter and Flavobacterium. Studies were conducted on the stability of myofibrillar protein of M. rosenbergii under different storage and pH conditions. The influence of a wide range of pH on the remaining Ca++ ATPase activity of M. rosenbergii muscle myofibrils after storage at -20°C for 2 days, at 0°C for 2 days and at 35°C for 30 minutes demonstrated that ATPase activities were lower in acidic and alkaline pH regions and the activity remained relatively high. Mg++ ATPase activities both in presence and absence of Ca++ remained high at neutral pH compared to those of acidic and alkaline region. The solubility of myofibrillar protein decreased gradually both in acidic and alkaline pH regions. The study also examined the bacteriological quality of freshly harvested M. rosenbergii, pond sediment and pond water from four commercial freshwater prawn farms at Fulpur and Tarakanda upazilas in the district of Mymensingh. The study included aerobic plate count (APC), total coliform count, detection, isolation and identification of suspected public health hazard bacteria and their seasonal variation, salt tolerance test, antibiotic sensitivity test of the isolates and washing effect of chlorinated water on the bacterial load in the prawn samples. APC in sediment soil and water of the farm and gill and hepatopancreas of freshly harvested prawns varied considerably among the farms and between summer and winter season. The range of coliform count in water, gill and hepatopancreas ranged between 6 - 2.8x10^2 CFU/ml, 1.2x10^2 - 3.32x10^2 CFU/g and 1.43x10^2 - 3.89 x10^3 CFU/g, respectively. No coliform was detected in pond sediment sample. Suspected health hazard bacteria isolated and identified from pond sediment, water, gill and hepatopancreas included Streptococcus, Bacillus, Escherichia coli, Klebsialla, Salmonella, Staphylococcus, Pseudomonas and Aeromonas. Bacillus, Salmonella and Staphyloccus [sic], and were found to be highly salt tolerant and capable of growing at 10% NaCl. The antibiotic discs with different concentration of antibiotics were used for the sensitivity test. The organisms were found to be most sensitive against Tetracyclin and Gentamycin.
Resumo:
Leonard Carpenter Panama Canal Collection. Photographs: Dredging, Soldiers, and Ships. [Box 1] from the Special Collections & Area Studies Department, George A. Smathers Libraries, University of Florida.
Resumo:
Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).
Resumo:
The use of strontium-to-calcium (Sr/Ca) ratios in otoliths is becoming a standard method to describe life history type and the chronology of migrations between freshwater and seawater habitats in teleosts (e.g. Kalish, 1990; Radtke et al., 1990; Secor, 1992; Rieman et al., 1994; Radtke, 1995; Limburg, 1995; Tzeng et al. 1997; Volk et al., 2000; Zimmerman, 2000; Zimmerman and Reeves, 2000, 2002). This method provides critical information concerning the relationship and ecology of species exhibiting phenotypic variation in migratory behavior (Kalish, 1990; Secor, 1999). Methods and procedures, however, vary among laboratories because a standard method or protocol for measurement of Sr in otoliths does not exist. In this note, we examine the variations in analytical conditions in an effort to increase precision of Sr/Ca measurements. From these findings we argue that precision can be maximized with higher beam current (although there is specimen damage) than previously recommended by Gunn et al. (1992).
Resumo:
Climate conditions in land areas of the Pacific Northwest are strongly influenced by atmosphere/ocean variability, including fluctuations in the Aleutian Low, Pacific-North American (PNA) atmospheric circulation modes, and the El Niño-Southern Oscillation (ENSO). It thus seems likely that climatically sensitive tree-ring data from these coastal land areas would likewise reflect such climatic parameters. In this paper, tree-ring width and maximum lakewood density chronologies from northwestern Washington State and near Vancouver Island, British Columbia, are compared to surface air temperature and precipitation from nearby coastal and near-coastal land stations and to monthly sea surface temperature (SST) and sea level pressure (SLP) data from the northeast Pacific sector. Results show much promise for eventual reconstruction of these parameters, potentially extending available instrumental records for the northeastern Pacific by several hundred years or more.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The characterization of inter-decadal climate variability in the Southern Hemisphere is severely constrained by the shortness of the instrumental climate records. To help relieve this constraint, we have developed and analyzed a reconstruction of warm-season (November-April) temperatures from Tasmanian tree rings that now extends back to 800 BC. A detailed analysis of this reconstruction in the time and frequency domains indicates that much of the inter-decadal variability is principally confined to four frequency bands with mean periods of 31, 57, 77, and 200 years. ... In so doing, we show how a future greenhouse warming signal over Tasmania could be masked by these natural oscillations unless they are taken into account.
Resumo:
Twelve commonly occurring coenocytic and siphonaceous species of marine benthic algae, i.e., Bryopsis pennatta Lamouroux, Caulerpa chemnitzia (Esper) Lamouroux, Ca. faridii Nizamuddin, Ca. manorensis Nizamuddin, Ca. racemosa (Forsskal) J. Agardh, Ca. taxifolia. (Vahl) C. Agardh, Chaetomorpha antennina (Bory de Saint-Vincent) Kutzing, Cladophora uncinella Harvey, Codium decorticatum (Woodward) Howe, Co. flabellatum Nizamuddin, Co. iyengarii Borgesen, and Valoniopsis pachynema (Martens) Borgesen, belonging to four different orders of the class Bryopsidophyceae, division Chlorophyta, were collected from the intertidal region of different coastal areas near Karachi (Pakistan) and investigated taxonomically. Codium decorticatum is a new report from this region and Co. decorticatum, Co. flabellatum and Co. iyengarii are described for the first time from the coast of Pakistan.