5 resultados para Bone contact
em Aquatic Commons
Resumo:
Otter trawls are very effective at capturing flatfish, but they can affect the seaf loor ecosystems where they are used. Alaska f latf ish trawlers have very long cables (called sweeps) between doors and net to herd fish into the path of the trawl. These sweeps, which ride on and can disturb the seaf loor, account for most of the area affected by these trawls and hence a large proportion of the potential for damage to seaf loor organisms. We examined modifications to otter trawls, such that disk clusters were installed at 9-m intervals to raise trawl sweeps small distances above the seafloor, greatly reducing the area of direct seafloor contact. A critical consideration was whether flatfish would still be herded effectively by these sweeps. We compared conventional and modified sweeps using a twin trawl system and analyzed the volume and composition of the resulting catches. We tested sweeps raised 5, 7.5, and 10 cm and observed no significant losses of flatfish catch until sweeps were raised 10 cm, and those losses were relatively small (5–10%). No size composition changes were detected in the flatfish catches. Alaska pollock (Theragra chalcogramma) were captured at higher rates with two versions of the modified sweeps. Sonar observations of the sweeps in operation and the seaf loor after passage confirmed that the area of direct seafloor contact was greatly reduced by the modified sweep
Resumo:
The ability to estimate the original size of an ingested prey item is an important step in understanding the community and population structure of piscivorous predators (Scharf et al., 1998). More specifically, knowledge of original prey size is essential for deriving important biological information, such as predator consumption rates, biomass of the prey consumed, and selectivity of a predator towards a specific size class of prey (Hansel et al., 1988; Scharf et al., 1997; Radke et al., 2000). To accurately assess the overall “top-down” pressure a predator may exert on prey community structure, prey size is crucial. However, such information is often difficult to collect in the field (Trippel and Beamish, 1987). Stomach-content analyses are the most common methods for examining the diets of piscivorous fish, but the prey items found are often thoroughly digested and sometimes unidentifiable. As a result, obtaining a direct measurement of prey items is frequently impossible.
Resumo:
Specimens of the false trevally (Lactarius lactarius ), 127 to 221 mm in total length, were studied for the mode of anchorage of the air-bladder with the interspinous bone of the anal fin. The 1st and 2nd interspinous bones are fused together into a single piece (named here as the anchor bone) which pierces through the air-bladder, dividing it into two intercommunicating chambers at its upper end, and ultimately articulates with the 10th vertebral bone. The lower end of the bone is broad, fan like with one side affording articulation with the 1st and 2nd anal spines. This is an unique feature of great taxonomical importance to L. lactarius, the only species in the family Lactariidae. The anal fin counts (23-27) and vertebral counts (23) are also given.
Resumo:
A laboratory based 2 x 2 factorial experiment was conducted to investigate the influences of dietary phosphorus and zinc levels on growth and bone mineralization in fingerlings of rainbow trout for 21 weeks. Two levels of phosphorus (19 and 30 mg/g) and two levels of zinc (55 and 103 Ag/g) in the dry diets were tested. Duplicate tanks of 30 rainbow trout (average weight 1.56 ± 0.24 g) per 60L glass tank were fed experimental diets three times a day to apparent satiation level at 15 to 24°C water temperature. The results of the present study demonstrated that dietary phosphorus supplementation influenced the growth and bone mineralization whereas zinc levels significantly (p<0.05) influenced bone mineralization in rainbow trout. Further investigations in this area with different size and age groups of this fish are broadly needed.
Resumo:
The behaviour of metals in aquatic ecosystems is dependent on various environmental factors. Experiments were conducted in five different contact times (0.5, 2, 12, 24 and 48h) between soil sediment and mercury on Cyprinus carpio var communis. It was observed that contact time with soil sediment had significant effect in reducing the toxicity of mercury. Higher the time of contact, greater the effect. Medium hard water (150 mg/L CaC0 sub(3) of total hardness) had the highest effect as compared to other water in reducing the toxicity of mercury when combined with underlying soil sediment. With the increase in contact time, complexation and adsorption of inorganic mercury ions with the dissolved and particulate phases of water and soil sediment were increased; thereby bioaccumulation of mercury ions by scale carp was more. Applicability of the result of this experiment in natural ecosystems was also suggested.