5 resultados para Boles, Tony

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

How to regulate phytoplankton growth in water supply reservoirs has continued to occupy managers and strategists for some fifty years or so, now, and mathematical models have always featured in their design and operational constraints. In recent years, rather more sophisticated simulation models have begun to be available and these, ideally, purport to provide the manager with improved forecasting of plankton blooms, the likely species and the sort of decision support that might permit management choices to be selected with increased confidence. This account describes the adaptation and application of one such model, PROTECH (Phytoplankton RespOnses To Environmental CHange) to the problems of plankton growth in reservoirs. This article supposes no background knowledge of the main algal types; neither does it attempt to catalogue the problems that their abundance may cause in lakes and reservoirs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article outlines the outcome of work that set out to provide one of the specified integral contributions to the overarching objectives of the EU- sponsored LIFE98 project described in this volume. Among others, these included a requirement to marry automatic monitoring and dynamic modelling approaches in the interests of securing better management of water quality in lakes and reservoirs. The particular task given to us was to devise the elements of an active management strategy for the Queen Elizabeth II Reservoir. This is one of the larger reservoirs supplying the population of the London area: after purification and disinfection, its water goes directly to the distribution network and to the consumers. The quality of the water in the reservoir is of primary concern, for the greater is the content of biogenic materials, including phytoplankton, then the more prolonged is the purification and the more expensive is the treatment. Whatever good that phytoplankton may do by way of oxygenation and oxidative purification, it is eventually relegated to an impurity that has to be removed from the final product. Indeed, it has been estimated that the cost of removing algae and microorganisms from water represents about one quarter of its price at the tap. In chemically fertile waters, such as those typifying the resources of the Thames Valley, there is thus a powerful and ongoing incentive to be able to minimise plankton growth in storage reservoirs. Indeed, the Thames Water company and its predecessor undertakings, have a long and impressive history of confronting and quantifying the fundamentals of phytoplankton growth in their reservoirs and of developing strategies for operation and design to combat them. The work to be described here follows in this tradition. However, the use of the model PROTECH-D to investigate present phytoplankton growth patterns in the Queen Elizabeth II Reservoir questioned the interpretation of some of the recent observations. On the other hand, it has reinforced the theories underpinning the original design of this and those Thames-Valley storage reservoirs constructed subsequently. The authors recount these experiences as an example of how simulation models can hone the theoretical base and its application to the practical problems of supplying water of good quality at economic cost, before the engineering is initiated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three experiments were performed in an estuarine squid-trawl fishery in New South Wales, Australia, to test modifications to trawl nets. Lateral mesh openings were experimentally increased and physical bycatch reduction devices (BRDs) were placed in codends. These modifications aimed to reduce nontargeted catches of fish, while maintaining catches of the targeted broad squid (Photololigo etheridgei) and bottle squid (Loliolus noctiluca). Compared to conventional codends made with 41-mm diamond mesh, codends made with different posterior circumferences and larger 45-mm mesh had no significant effect on the catches of any species. The best performing configurations involved the installation of BRDs designed to separate organisms according to differences in behavior. In particular, versions of a composite square-mesh panel reduced the total weight of bycatch by up to 71% and there was no significant effect on the catches of squid. The results are discussed in terms of the probable differences in behavior between fish and squid in codends. After this study, a square-mesh panel BRD was voluntarily adopted throughout the fishery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report we analyze the Topic 5 report’s recommendations for reducing nitrogen losses to the Gulf of Mexico (Mitsch et al. 1999). We indicate the relative costs and cost-effectiveness of different control measures, and potential benefits within the Mississippi River Basin. For major nonpoint sources, such as agriculture, we examine both national and basin costs and benefits. Based on the Topic 2 economic analysis (Diaz and Solow 1999), the direct measurable dollar benefits to Gulf fisheries of reducing nitrogen loads from the Mississippi River Basin are very limited at best. Although restoring the ecological communities in the Gulf may be significant over the long term, we do not currently have information available to estimate the benefits of such measures to restore the Gulf’s long-term health. For these reasons, we assume that measures to reduce nitrogen losses to the Gulf will ultimately prove beneficial, and we concentrate on analyzing the cost-effectiveness of alternative reduction strategies. We recognize that important public decisions are seldom made on the basis of strict benefit–cost analysis, especially when complete benefits cannot be estimated. We look at different approaches and different levels of these approaches to identify those that are cost-effective and those that have limited undesirable secondary effects, such as reduced exports, which may result in lost market share. We concentrate on the measures highlighted in the Topic 5 report, and also are guided by the source identification information in the Topic 3 report (Goolsby et al. 1999). Nonpoint sources that are responsible for the bulk of the nitrogen receive most of our attention. We consider restrictions on nitrogen fertilizer levels, and restoration of wetlands and riparian buffers for denitrification. We also examine giving more emphasis to nitrogen control in regions contributing a greater share of the nitrogen load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guánica Bay is a major estuary on the southwest coast of Puerto Rico. Significant coral reef ecosystems are present outside the bay. These valuable habitats may be impacted by transport of sediments, nutrients and contaminants from the watershed, through the bay and into the offshore waters. The National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Coastal Ocean Science (NCCOS), in consultation with local and regional experts, conducted an interdisciplinary assessment of coral reef ecosystems, contaminants, sedimentation rates and nutrient distribution patterns in and around Guánica Bay. This work was conducted using many of the same protocols as ongoing monitoring work underway elsewhere in the U.S. Caribbean and has enabled comparisons among coral reef ecosystems between this study and other locations in the region. This characterization of Guánica marine ecosystems establishes benchmark conditions that can be used for comparative documentation of future change, including possible negative outcomes due to future land use change, or improvement in environmental conditions arising from management actions. This report is organized into six chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to the study area. Chapter 2 is focused on biogeographic assessments and benthic mapping of the study area, including new surveys of fish, marine debris and reef communities on hardbottom habitats in the study area. Chapter 3 quantifies the distribution and magnitude of a suite of contaminants (e.g., heavy metals, PAHs, PCBs, pesticides) in both surface sediments and coral tissues. Chapter 4 presents results of sedimentation measurements in and outside of the bay. Chapter 5 examines the distribution of nutrients in in the bay, offshore from the bay and in the watershed. Chapter 6 is a brief summary discussion that highlights key findings of the entire suite of studies.