7 resultados para Biotechnological applications
em Aquatic Commons
Resumo:
The framework of sediment budget concepts provides a formalized procedure to account for the various components of sediment flux and the changes of volume that occur within a given region. Sediment budget methodology can be useful in a number of coastal engineering and research applications, including: inferring the amount of onshore sediment transport for a nearshore system that contains an "excess of sediment", determining sediment deficits to downdrift beaches as a result of engineering works at navigational entrances, evaluating the performance of a beach nourishment project, inferring the distribution of longshore sediment transport across the surf zone, etc. This chapter reviews briefly the governing equations for sediment budget calculations, considers various measurement and other bases for determining the sediment flux components necessary to apply the sediment budget concept and finally for illustration purposes, applies the sediment budget concept to several examples. (PDF contains 52 pages.)
Resumo:
In response to nuisance growths of algae and vascular plants, such as dioecious hydrilla ( Hydrilla verticillata L.f. Royle), copper formulations have been applied in lakes and reservoirs for a number of years. Concerns have arisen regarding the long-term consequences of copper applications and those concerns have appropriately focused on sediment residues. In this study, we evaluated the toxicity of sediments from treated (for a decade) and untreated areas in Lake Murray, South Carolina and estimated the capacity of those sediments to bind additional copper. Two sentinel aquatic invertebrates, Hyalella azteca Saussure and Ceriodaphnia dubia Richard, were used to measure residual toxicity of treated and untreated sediments from the field and after laboratory amendments. (PDF has 5 pages.)
Resumo:
Increased boating activities and new waterfront developments have contributed an estimated 3,000 dismantled, abandoned, junked, wrecked, derelict vessels to Florida coastal waters. This report outlines a method of siting and prioritizing derelict vessel removal using the Florida Keys as a test area. The data base was information on 240 vessels, obtained from Florida Marine Patrol files. Vessel location was plotted on 1:250,000 regional and 1:5,000 and 1:12,000 site maps. Type of vessel, length, hull material, engine, fuel tanks, overall condition, afloat and submerged characteristics, and accessibility, were used to derive parametric site indices of removal priority and removal difficulty. Results indicate 59 top priority cases which should be the focus of immediate clean up efforts in the Florida Keys. Half of these cases are rated low to moderate in removal difficulty; the remainder are difficult to remove. Removal difficulty is a surrogate for removal cost: low difficulty -low cost, high difficulty - high cost. The rating scheme offers coastal planners options of focusing removal operations either on (1) specific areas with clusters of high priority derelict vessels or on (2) selected targeted derelicts at various, specific locations. (PDF has 59 pages.)
Resumo:
The use of reproductive and genetic technologies can increase the efficiency of selective breeding programs for aquaculture species. Four technologies are considered, namely: marker-assisted selection, DNA fingerprinting, in-vitro fertilization, and cryopreservation. Marker-assisted selection can result in greater genetic gain, particularly for traits difficult or expensive to measure, than conventional selection methods, but its application is currently limited by lack of high density linkage maps and by the high cost of genotyping. DNA fingerprinting is most useful for genetic tagging and parentage verification. Both in-vitro fertilization and cryopreservation techniques can increase the accuracy of selection while controlling accumulation of inbreeding in long-term selection programs. Currently, the cost associated with the utilization of reproductive and genetic techniques is possibly the most important factor limiting their use in genetic improvement programs for aquatic species.
Resumo:
A concept for joint research on aquaculture in the Baltic Sea area is presented. It consists of three major parts, the promotion of an aquaculture-based-fisheries, the development of low-output land-based aquaculture systems, and the search for sustainably produced substances from aquatic organisms to be used for different processes. They include substitutes for feeding stuffs or products of importance for medical, biotechnological and industrial applications.
Resumo:
The Alliance for Coastal Technologies (ACT) convened a Workshop on "Recent Developments in In Situ Nutrient Sensors: Applications and Future Directions" from 11-13 December, 2006. The workshop was held at the Georgia Coastal Center in Savannah, Georgia, with local coordination provided by the ACT partner at the Skidaway Institute of Oceanography (University System of Georgia). Since its formation in 2000, ACT partners have been conducting workshops on various sensor technologies and supporting infrastructure for sensor systems. This was the first workshop to revisit a topic area addressed previously by ACT. An earlier workshop on the "State of Technology in the Development and Application of Nutrient Sensors" was held in Savannah, Georgia from 10-12 March, 2003. Participants in the first workshop included representatives from management, industry, and research sectors. Among the topics addressed at the first workshop were characteristics of "ideal" in situ nutrient sensors, particularly with regard to applications in coastal marine waters. In contrast, the present workshop focused on the existing commercial solutions. The in situ nutrient sensor technologies that appear likely to remain the dominant commercial options for the next decade are reagent-based in situ auto-analyzers (or fluidics systems) and an optical approach (spectrophotometric measurement of nitrate). The number of available commercial systems has expanded since 2003, and community support for expanded application and further development of these technologies appears warranted. Application in coastal observing systems, including freshwater as well as estuarine and marine environments, was a focus of the present workshop. This included discussion of possible refinements for sustained deployments as part of integrated instrument packages and means to better promote broader use of nutrient sensors in observing system and management applications. The present workshop also made a number of specific recommendations concerning plans for a demonstration of in situ nutrient sensor technologies that ACT will be conducting in coordination with sensor manufacturers.[PDF contains 40 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop "Applications of in situ Fluorometers in Nearshore Waters" was held in Cape Elizabeth, Maine, February 2-4,2005, with sponsorship by the Gulf of Maine Ocean Observing System (GoMOOS), one of the ACT partner organization. The purpose of the workshop was to explore recent trends in fluorometry as it relates to resource management applications in nearshore environments. Participants included representatives from state and federal environmental management agencies as well as research institutions, many of whom are currently using this technology in their research and management applications. Manufacturers and developers of fluorometric measuring systems also attended the meeting. The Workshop attendees discussed the historical and present uses of fluorometry technology and identified the great potential for its use by coastal managers to fulfill their regulatory and management objectives. Participants also identified some of the challenges associated with the correct use of Fluorometers to estimate biomass and the rate of primary productivity. The Workshop concluded that in order to expand the existing use of fluorometers in both academic and resource management disciplines, several issues concerning data collection, instrument calibration, and data interpretation needed to be addressed. Participants identified twelve recommendations, the top five of which are listed below: Recommendations 1) Develop a "Guide" that describes the most important aspects of fluorescence measurements. This guide should be written by an expert party, with both research and industry input, and should be distributed by all manufacturers with their instrumentation. The guide should also be made available on the ACT website as well as those of other relevant organizations. The guide should include discussions on the following topics: The benefits of using fluorometers in research and resource management applications; What fluorometers can and cannot provide in terms of measurements; The necessary assumptions required before applying fluorometry; Characterization and calibration of fluorometers; (pdf contains 32 pages)