2 resultados para Biomes

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

General Circulation Models (GCMs) may be useful in estimating the ecological impacts of global climatic change. We analyzed seasonal weather patterns over the conterminous United States and determined that regional patterns of rainfall seasonality appear to control the distributions of the Nation's major biomes. These regional patterns were compared to the output from three GCMs for validation. The models appear to simulate the appropriate seasonal climates in the northern tier of states. However, the spatial extent of these regions is distorted. None of the models accurately portrayed rainfall seasonalities in the southern tier of states, where biomes are primarily influenced by the Bermuda High.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Current projections of the response of the biosphere to global climatic change indicate as much as 50 to 90% spatial displacement of extratropical biomes. The mechanism of spatial shift could be dominated either by competitive displacement of northern biomes by southern biomes or by drought-induced dieback of areas susceptible to change. The current suite of global biosphere models cannot distinguish between these two processes, hence the need for a mechanistically based biome model. The first steps have been taken toward development of a rule-based, mechanistic model of regional biomes at a continental scale. ... The model is in an early stage of development and will require several enhancements, including: explicit simulation of potential evapotranspiration, extension to boreal and tropical biomes, a shift from steady-state to transient dynamics, and validation on other continents.