5 resultados para Biomass, ash free dry mass
em Aquatic Commons
Resumo:
Graphs of variations of zooplankton biomasses expressed as ash-free dry weight (i.e. organic matter) are presented for the 1969-1979 period. The graph of the average year shows: an enrichment season from mid-July till mid-November in which the biomass is 2.3 times higher than the rest of the year and characterized by a slight decrease of the biomass in late August or early September. The warm season is divided into a period of moderate biomass from November till February, a period of moderate biomass from November till February and a period of steady decline of the biomass till the start of the upwelling at the end of June.
Resumo:
Methods for the estimation of zooplankton biomasses, used in the Oceanographic Research Center of Abidjan are presented. They deal with settled and displacement volumes, dry weight and ash-free dry weight, elementary carbon, nitrogen and phosphorus composition. The dry weight method is detailed: elimination of salt by a fresh water stream, preservation of dry samples at -20 degrees Celsius, rehydration during weighing. A few comments on the 'CHN' analysed values are made: at 1,100 degrees Celsius, most of the carbon is organic, only 10% of the mineral fraction being analysed.
Resumo:
Shell dimensions (length, height, width) and shell volume were evaluated as estimators of growth for Polymesoda erosa in northern Australia. Each parameter was a good estimator when applied to live weight (r2 values of 76-96 percent), but not to soft tissue weight (wet, dry, or ash-free dry weight) (r2 values of 13-32 percent). The b value for shell volume to weight relationship of clams collected during the dry season (June to October) was signifi cantly different than for those collected in the wet season (February to April).
The evolution of body muscle composition of the African catfish (Clarias gariepinus) (Burchell 1822)
Resumo:
Changes in body muscle composition of Clarias gariepinus were studied in fish reared from 1.08 g to 383 g mean body weight in a 201-day culture period. Changes in the amount of protein content, dry matter and ash free dry matter in the muscle tissue can be described as a function of body weight. The percentage of protein content was observed to be higher in bigger fish. Fat content was low throughout the fingerling stage. Specific growth rate decreased significantly at 400 g mean body weight (P<0.05) while feed conversion rate increased. The conclusion, based on the culture conditions in this study, is that the optimal weight for harvesting C. gariepinus is 400 g.
Resumo:
A study of aquatic plant biomass within Cayuga Lake, New York spans twelve years from 1987-1998. The exotic Eurasian watermilfoil ( Myriophyllum spicatum L.) decreased in the northwest end of the lake from 55% of the total biomass in 1987 to 0.4% in 1998 and within the southwest end from 50% in 1987 to 11% in 1998. Concurrent with the watermilfoil decline was the resurgence of native species of submersed macrophytes. During this time we recorded for the first time in Cayuga Lake two herbivorous insect species: the aquatic moth Acentria ephemerella , first observed in 1991, and the aquatic weevil Euhrychiopsis lecontei , first found in 1996 . Densities of Acentria in southwest Cayuga Lake averaged 1.04 individuals per apical meristem of Eurasian watermilfoil for the three-year period 1996-1998. These same meristems had Euhrychiopsis densities on average of only 0.02 individuals per apical meristem over the same three-year period. A comparison of herbivore densities and lake sizes from five lakes in 1997 shows that Acentria densities correlate positively with lake surface area and mean depth, while Euhrychiopsis densities correlate negatively with lake surface area and mean depth. In these five lakes, Acentria densities correlate negatively with percent composition and dry mass of watermilfoil. However, Euhrychiopsis densities correlate positively with percent composition and dry mass of watermilfoil. Finally, Acentria densities correlate negatively with Euhrychiopsis densities suggesting interspecific competition.