53 resultados para Biochemical Processes
em Aquatic Commons
Resumo:
Lake Edku is one of the Nile Delta lakes. It is subjected to contaminations by several anthropogenic materials such as trace elements and other wastes. The distribution of the different chemical forms of copper and manganese has been studied using sequential extraction techniques. Chemical analysis of the sediments shows that CaCO sub(3) ranged from 3.7% to 9.6% and organic matter from 3.06% to 8.11%. The results indicate that the distribution of manganese among the six chemical forms in the sediments of the lake obeys the following order: Mn-residual>Mn-carbonate>Mn-moderately reducible>Mn-organic form>Mn-exchangeable > Mn-easily reducible fraction. Also, the data revealed that more than 50% of the total manganese was found in the residual form, while the remainder was distributed among the other forms. In contrast, more than 70% of the total copper content was associated with the five chemical forms (exchangeable, carbonate, easily and moderately reducible and organic forms). Generally, the enrichment of manganese in the residual form revealed the important role in building up of clay minerals, while the distribution of copper among the different forms reflects an important role in biological and biochemical processes.
Resumo:
Chemical ecology is the science of study and analysis of natural chemical products in result of biochemical processes in organisms and their reactions to variations of ecological and environmental parameters. In marine chemical ecology the existence of natural products in aquatic organisms and their ecological roles in marine animals and their reactions to environmental parameters variations will be studied. Among them, fatty acids are the most various and abundant ones in natural products which had been extracted from many marine organisms such as mollusks and algae. In this study selected animals were the dominant species of mollusks in intertidal zone of chabahar bay including gastropods, bivalves and polyplacophora classes. Nerita textilis and Turbo coronatus species are among gastropoda, Saccostrea cucullata is from bivalve, and Chiton lamyi is from polyplacophora. After seasonal sampling, separation and identification of natural products of these species, fatty acids had been isolated and identified by GC mass chromatography and their seasonal variations had been identified. In addition environmental factors of the location including pH, salinity temperature, dissolved oxygen, chlorophyll a and nutrients were measured monthly. Then the effect of seasonal variations of environmental factors on fatty acids had been studied by applying statistical analysis. GC/MS resulted thirteen fatty acids, which the most importants were myristic, stearic, oleic, palmitoleic, arachidonic and eicosapentaenoic acids. In majority of species palmitic acid was most abundant than the others and saturatedes had the most percentage levels than unsaturated ones. Although seasonal variations of identified fatty acids was not similar in species, but the majority of unsaturated ones had their maximum during winter, while saturated acids reached their maximum in summer. Statistical Analysis showed the strong correlations between Environmental factors and some fatty acids and temperature, nitrate, silicate and pH had strong correlations in all species. The species was studied from the point of lipid content and the results showed a good quality of lipid content in the selected species in the intertidal zone of Chabahar bay.
Resumo:
The effects of potential sea level rise on the shoreline and shore environment have been briefly examined by considering the interactions between sea level rise and relevant coastal processes. These interactions have been reviewed beginning with a discussion of the need to reanalyze previous estimates of eustatic sea level rise and compaction effects in water level measurement. This is followed by considerations on sea level effects on coastal and estuarine tidal ranges, storm surge and water level response, and interaction with natural and constructed shoreline features. The desirability to reevaluate the well known Bruun Rule for estimating shoreline recession has been noted. The mechanics of ground and surface water intrusion with reference to sea level rise are then reviewed. This is followed by sedimentary processes in the estuaries including wetland response. Finally comments are included on some probable effects of sea level rise on coastal ecosystems. These interactions are complex and lead to shoreline evolution (under a sea level rise) which is highly site-specific. Models which determine shoreline change on the basis of inundation of terrestrial topography without considering relevant coastal processes are likely to lead to erroneous shoreline scenarios, particularly where the shoreline is composed of erodible sedimentary material. With some exceptions, present day knowledge of shoreline response to hydrodynamic forcing is inadequate for long-term quantitative predictions. A series of interrelated basic and applied research issues must be addressed in the coming decades to determine shoreline response to sea level change with an acceptable degree of confidence. (PDF contains 189 pages.)
Resumo:
Functional linkage between reef habitat quality and fish growth and production has remained elusive. Most current research is focused on correlative relationships between a general habitat type and presence/absence of a species, an index of species abundance, or species diversity. Such descriptive information largely ignores how reef attributes regulate reef fish abundance (density-dependent habitat selection), trophic interactions, and physiological performance (growth and condition). To determine the functional relationship between habitat quality, fish abundance, trophic interactions, and physiological performance, we are using an experimental reef system in the northeastern Gulf of Mexico where we apply advanced sensor and biochemical technologies. Our study site controls for reef attributes (size, cavity space, and reef mosaics) and focuses on the processes that regulate gag grouper (Mycteroperca microlepis) abundance, behavior and performance (growth and condition), and the availability of their pelagic prey. We combine mobile and fixed-active (fisheries) acoustics, passive acoustics, video cameras, and advanced biochemical techniques. Fisheries acoustics quantifies the abundance of pelagic prey fishes associated with the reefs and their behavior. Passive acoustics and video allow direct observation of gag and prey fish behavior and the acoustic environment, and provide a direct visual for the interpretation of fixed fisheries acoustics measurements. New application of biochemical techniques, such as Electron Transport System (ETS) assay, allow the in situ measurement of metabolic expenditure of gag and relates this back to reef attributes, gag behavior, and prey fish availability. Here, we provide an overview of our integrated technological approach for understanding and quantifying the functional relationship between reef habitat quality and one element of production – gag grouper growth on shallow coastal reefs.
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Towed Vehicles: Undulating Platforms As Tools for Mapping Coastal Processes and Water Quality Assessment was convened February 5-7,2007 at The Embassy Suites Hotel, Seaside, California and sponsored by the ACT-Pacific Coast partnership at the Moss Landing Marine Laboratories (MLML). The TUV workshop was co-chaired by Richard Burt (Chelsea Technology Group) and Stewart Lamerdin (MLML Marine Operations). Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the application of TUV platforms in coastal resource assessment and management. The workshop was organized to address recognized limitations of point-based monitoring programs, which, while providing valuable data, are incapable of describing the spatial heterogeneity and the extent of features distributed in the bulk solution. This is particularly true as surveys approach the coastal zone where tidal and estuarine influences result in spatially and temporally heterogeneous water masses and entrained biological components. Aerial or satellite based remote sensing can provide an assessment of the aerial extent of plumes and blooms, yet provide no information regarding the third dimension of these features. Towed vehicles offer a cost-effective solution to this problem by providing platforms, which can sample in the horizontal, vertical, and time-based domains. Towed undulating vehicles (henceforth TUVs) represent useful platforms for event-response characterization. This workshop reviewed the current status of towed vehicle technology focusing on limitations of depth, data telemetry, instrument power demands, and ship requirements in an attempt to identify means to incorporate such technology more routinely in monitoring and event-response programs. Specifically, the participants were charged to address the following: (1) Summarize the state of the art in TUV technologies; (2) Identify how TUV platforms are used and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (3) Identify barriers and challenges to the application of TUV technologies in management and research activities, and (4) Recommend a series of community actions to overcome identified barriers and challenges. A series of plenary presentation were provided to enhance subsequent breakout discussions by the participants. Dave Nelson (University of Rhode Island) provided extensive summaries and real-world assessment of the operational features of a variety of TUV platforms available in the UNOLs scientific fleet. Dr. Burke Hales (Oregon State University) described the modification of TUV to provide a novel sampling platform for high resolution mapping of chemical distributions in near real time. Dr. Sonia Batten (Sir Alister Hardy Foundation for Ocean Sciences) provided an overview on the deployment of specialized towed vehicles equipped with rugged continuous plankton recorders on ships of opportunity to obtain long-term, basin wide surveys of zooplankton community structure, enhancing our understanding of trends in secondary production in the upper ocean. [PDF contains 32 pages]
Resumo:
(PDF contains 114 pages)
Resumo:
The studies reported were undertaken as part of a wide environmental feasibility study for the establishment of a modern sewage system in Freetown. The aim of this part of the study was to determine whether the hydrological regime of the Sierra Leone River Estuary would permit the large-scale introduction of sewage into the estuary without damaging the environment. The important factors were whether: 1) there would be sufficient dilution of the sewage; 2) fleatable particles or other substances would create significant adverse effects in the estuarine ecosystem. The outfall sites are described together with the sampling stations, methods and analyses. Results include: 1) T/S profiles; 2) chemical analysis of the water. A review of literature on the Sierra Leone River Estuary is included which provides information on the plankton, benthos and fisheries. Results suggest that at certain points where local circulations occur it would be inadvisable to locate untreated sewage outfalls. Such points are frequently observed in small embayments. These studies have been of short duration but the data can serve as baseline for more extended investigations which would give a more complete picture of the seasonal patterns in the estuary.
Resumo:
Research on the basic reproduction processes of Gammarus is summarized and reviewed, reproductive strategies in males and females being left to two later papers. The author describes the reproductive systems, the development of eggs (oocytes) in the ovaries, courtship and precopulatory amplexus, mating and the production of sperms, egg laying, mortality and diapause.
Resumo:
Very little research has been carried out on detrital energetics and pathways in lotic ecosystems. Most investigations have concentrated on the degradation of allochthonous plant litter by fungi, with a glance at heterotrophic bacteria associated with decaying litter. In this short review, the author describes what is known of the detrition of plant litter in lotic waters, which results from the degradative activities of colonising saprophytic fungi and bacteria, and goes on to relate this process to those invertebrates that consume coarse and/or fine particulate detritus, or dissolved organic matter that aggregates into colloidal exopolymer particles. It is clear that many of the key processes involved in the relationships between the physical, chemical, biotic and biochemical elements present in running waters are very complex and poorly understood. Those few aspects for which there are reliable models with predictive power have resulted from data collections made over periods of 20 years or more. Comprehensive research of single catchments would provide a fine opportunity to collect data over a long period.
Resumo:
This partial translation of a longer article describes the phenomenon of ”Blasensand”. Blasensand is formed when sedimentation of dried out sand is suddenly flooded from above. A more detailed explanation of Blasensand is given in this translated part of the paper.
Resumo:
This short interim progress report builds on previous progress reports which have described the quantification of the process both within and between lakes of different degrees of eutrophication. These data indicated that slight changes in methodology, particularly when investigating sediment deposits, could grossly affect the measured activity. The aim of the present research was an attempt to rationalize these differences. If this could be achieved it would enable meaningful interpretation of published data obtained using different methods and therefore enlarge the available database. In addition some observations have been made on the production of nitrite by Grasmere profundal sediment slurries sampled during the circulation period.
Resumo:
This review is concerned with the kinetics of calcium carbonate formation and related processes which are important in many hard waters.
Resumo:
This project investigated the production of nitrate (nitrification) by bacteria in lakes. The work was undertaken as nitrification is a key process in the nitrogen cycle and previous estimates of rates of nitrification were unreliable. When different methods were used to estimate rates of nitrification within sediment deposits different results were obtained. Investigation' of specific aspects of these methodologies has allowed some rationalization of these observations and also enabled comparisons of previously published data which, beforehand, was not possible. However, it was not clear which methods gave the most reliable rate estimates. Calculation of a nitrate budget for Grasmere lake indicated that the use of methods which involved the mixing of surface sediments (and therefore disrupted preformed nutrient gradients) overestimated the rate of nitrification. The study concludes that slight changes in the method used to prepare sediment slurries can result in large changes, in the measured nitrifying activity. This makes comparisons between studies, using different methods, extremely difficult. Methods to study sediment nitrification processes which do not disrupt preformed substrate gradients within the sediment provide the most reliable rate estimates.
Resumo:
The processes which control the growth, composition, succession and loss from suspension of phytoplankton algae are briefly reviewed, with special reference to function in eutrophic reservoir systems. The ecology of larger algal biomasses supported by high nutrient loading rates are more likely to be subject to physical (wash-out, underwater light penetration, thermal stability and mixing) than to chemical constraints. Sudden changes in the interactions between physical factors temporarily impair the growth of dominant algal species, and advance the succession. Certain algae may be cropped heavily, but selectively, by zooplankton feeding, but they are rarely the species which cause problems in waterworks practice. Grazing, however, does influence succession. A deeper understanding of the operation of loss control mechanism is urgently required. Potentially, manipulation of the physical environment provides an important means of alleviating day-to-day algal problems in eutrophic reservoirs; in terms of cost effectiveness these may prove to be more attractive than reducing nutrient loads at source.
Resumo:
Mixing and transport processes in surface waters strongly influence the structure of aquatic ecosystems. The impact of mixing on algal growth is species-dependent, affecting the competition among species and acting as a selective factor for the composition of the biocoenose. Were it not for the ever-changing ”aquatic weather”, the composition of pelagic ecosystems would be relatively simple. Probably just a few optimally adapted algal species would survive in a given water-body. In contrast to terrestrial ecosystems, in which the spatial heterogeneity is primarily responsible for the abundance of niches, in aquatic systems (especially in the pelagic zone) the niches are provided by the temporal structure of physical processes. The latter are discussed in terms of the relative sizes of physical versus biological time-scales. The relevant time-scales of mixing and transport cover the range between seconds and years. Correspondingly, their influence on growth of algae is based on different mechanisms: rapid changes are relevant for the fast biological processes such as nutrient uptake and photosynthesis, and the slower changes are relevant for the less dynamic processes such as growth, respiration, mineralization, and settling of algal cells. Mixing time-scales are combined with a dynamic model of photosynthesis to demonstrate their influence on algal growth.