16 resultados para Bi-Ventricular Assist Device
em Aquatic Commons
Resumo:
The first year-round quarterly surveys were completed for the year 2011. For the year 2012, SON management decided to change the frequency of the surveys from quarterly to biannual and the first such survey, was undertaken in June 2012. The second survey was undertaken in December 2012 and is the subject of this report: Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. SON cage study sites were coded as downstream of cages (DSC), within cages (WIC) and upstream of cages (USC). Physical-chemical parameters (water column temperature, dissolved oxygen, pH, conductivity, were measured in-situ with a pre-calibrated hydrolab at each site. A digital Echo Sounder was used to determine the total water column depth at each site. A black and white Secchi disc was used to determine water column transparency. Coordinate locations were determined with a GPS device.
Resumo:
Coastal managers need accessible, trusted, tailored resources to help them interpret climate information, identify vulnerabilities, and apply climate information to decisions about adaptation on regional and local levels. For decades, climate scientists have studied the impacts that short term natural climate variability and long term climate change will have on coastal systems. For example, recent estimates based on Intergovernmental Panel on Climate Change (IPCC) warming scenarios suggest that global sea levels may rise 0.5 to 1.4 meters above 1990 levels by 2100 (Rahmstorf 2007; Grinsted, Moore, and Jevrejeva 2009). Many low-lying coastal ecosystems and communities will experience more frequent salt water intrusion events, more frequent coastal flooding, and accelerated erosion rates before they experience significant inundation. These changes will affect the ways coastal managers make decisions, such as timing surface and groundwater withdrawals, replacing infrastructure, and planning for changing land use on local and regional levels. Despite the advantages, managers’ use of scientific information about climate variability and change remains limited in environmental decision-making (Dow and Carbone 2007). Traditional methods scientists use to disseminate climate information, like peer-reviewed journal articles and presentations at conferences, are inappropriate to fill decision-makers’ needs for applying accessible, relevant climate information to decision-making. General guides that help managers scope out vulnerabilities and risks are becoming more common; for example, Snover et al. (2007) outlines a basic process for local and state governments to assess climate change vulnerability and preparedness. However, there are few tools available to support more specific decision-making needs. A recent survey of coastal managers in California suggests that boundary institutions can help to fill the gaps between climate science and coastal decision-making community (Tribbia and Moser 2008). The National Sea Grant College Program, the National Oceanic and Atmospheric Administration's (NOAA) university-based program for supporting research and outreach on coastal resource use and conservation, is one such institution working to bridge these gaps through outreach. Over 80% of Sea Grant’s 32 programs are addressing climate issues, and over 60% of programs increased their climate outreach programming between 2006 and 2008 (National Sea Grant Office 2008). One way that Sea Grant is working to assist coastal decision-makers with using climate information is by developing effective methods for coastal climate extension. The purpose of this paper is to discuss climate extension methodologies on regional scales, using the Carolinas Coastal Climate Outreach Initiative (CCCOI) as an example of Sea Grant’s growing capacities for climate outreach and extension. (PDF contains 3 pages)
Resumo:
North Carolina fishery managers are considering methods to offer greater protection to the blue crab, Callinectes sapidus, spawning stock while maintaining a viable commercial fishery for female blue crabs in high salinity estuaries. We tested how effectively wire rectangles, or excluders, of two internal sizes, 45x80 mm and 45x90 mm, would prevent entry of ovigerous female (sponge) crabs into pots relative to control pots (without excluders) while maintaining sizes and catch rates of male and nonsponged female hard crabs. Field sampling among three pot designs (two excluder sizes and control pots) was conducted in Core Sound, N.C., during 2004–06. Median sizes (carapace widths) of mature female crabs were not different among the three pot types. However, median sizes of male crabs and sponge crabs were greater in control pots than pots with either size of excluder. Catch rates of mature female crabs from control pots were greater than from pots with 45x85 mm excluders. Catch rates of legal male and sponge crabs from control pots were greater than from pots with either size of excluder. Results indicate that using excluders involves a tradeoff between reducing catches and sizes of sponge crabs while also reducing sizes and catches of legally harvestable nonsponge crabs; moreover, the reduction in total catch and sizes would be greater for legal male crabs than for legal nonsponged female crabs. In high salinity waters close to North Carolina’s existing no-harvest blue crab sanctuaries, where females typically dominate catches of hard crabs, the benefit of using excluders to prevent entry of sponge crabs may outweigh a potentially modest decrease in landings of nonsponged females.
Resumo:
Mortality of diamondback terrapins, Malaclemys terrapin, in blue crab, Callinectes sapidus, traps has become a controversial bycatch issue in some areas. Traps with turtle excluder devices (TED’s) had increased sublegal (14.5%), legal (32.9%), and total (25.7%) blue crab catch per trap day (CPUE). There were statistically significant differences between total (P=0.0202) and legal (0.0174) CPUE for standard traps and traps with TED’s. The increased catch rates of blue crabs in traps with TED’s may be due to decreased escapement through the entrance f
Resumo:
Thirty-six years ago, NOAA’s National Marine Fisheries Service began research on how to reduce mortality of sea turtles, Chelonioidea, in shrimp trawls. As a result of efforts of NMFS and many stakeholders, including domestic and foreign fishermen, environmentalists, Sea Grant agents, and government agencies, many trawl fisheries around the world use a version of the turtle excluder device (TED). This article chronicles the contributions of NMFS to this effort, much of which occurred at the NMFS Mississippi Laboratories in Pascagoula. Specifically, it summarizes the impetus for and results of major developments and little known events in the TED research and discusses how these influenced the course of subsequent research.
Resumo:
This report is divided into six sections, the first of which provides information on documents that emphasize the need for education/training of minorities in the sciences including marine science. Also provided is material students can use to find out about careers in the sciences, some universities that offer marine science education, and curricula that should be considered. The second section deals with existing programs designed to train pre-college students and prepare them either for further education or potential employment in the sciences. The next four sections deal with existing programs in the marine sciences for college-level students, scholarships and scholarship programs, examples of loan programs, and internships and internship programs.
Resumo:
This paper embodies details and method of operation of a mechanical device developed for eradication of submerged aquatic weeds. The economics of operation is also discussed.
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested NaFIRRI to provide technical assistance to undertake regular environment monitoring of the cage site as is mandatory under the NEMA conditions. NAFIRRI agreed to undertake regular environment surveys in the cage area covering selected physical‐chemical factors i.e. water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity, redox potential and turbidity; nutrient status, algal and invertebrate communities (micro‐invertebrates/zooplankton and macro‐invertebrates/macro‐benthos) as well as fish community. The first year‐round quarterly surveys were completed for the year 2011. It was decided by SON management to change the frequency of the monitoring surveys to biannual starting in the year 2012 and the first such survey, which is the subject of this report, was undertaken in June 2012. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. SON
Resumo:
A study on the feasibility of bi-culture of mud crab (Scylla serrata) and shrimp (Penaeus monodon) in brackishwater earthen ponds (0.1 ha each) was carried out for a period of five months (March-August). Nursed shrimp juvenile (ABL:· 3.36±0.23 em and ABW: 0.26±0.04 g) and crab juvenile (ACL: 2.61±0.22 cm, ACW: 4.63±0.11 cm and ABW: 43±2.64 g) were stocked following the experimental design of shrimp 2/m2 (Treatment-1), shrimp 2/m2 and mud crab l/m2 (Treatment-2) and shrimp 2/m2 and mud crab 0.5/m2 (Treatment-3). Crabs were fed with chopped trash tilapia @ 10~5%, while shrimp were fed with Saudi-Bangla shrimp feed @ 3~5% of biomass twice daily. Significantly (p<0.05) higher specific growth rate (SGR) of shrimp and mud crab was 1.86% (g/day) in T2 and 0.83% (g/day) in T3, respectively. The survival of shrimp and mud crab also varied significantly (p<0.05) with a higher mean value of74.63% in Tl and 51.04% in T3, respectively. The production of shrimp (424.09 kg/ha) was significantly (p<0.05) higher in Tl and that of mud crab (568.80 kg/ha) in T2. Significantly (p<0.05) highest total production of 871.29 kg!ha was in T2 followed by 708.52 kg/ha in T3 and 424.09 kg/ha in Tl. The results indicate that mud crab can be cultured at a stocking rate of 1/m2 together with shrimp at 2/m2 •