181 resultados para Benthos - Victoria

em Aquatic Commons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The zooplankton and macrobenthic communities of Lake Victoria were sampled by lift net and Ponar grab, respectively. The zooplankton comprised copepods and cladocerans, rotifers and aquatic insect larvae. Most taxa exhibited wide distribution in the lake, with the exception of rotifers which were rare in deep offshore waters. The main components in the macro-benthos were chaoborid and chironomid larvae and molluscs. Caridina nilotica (Roux) and other groups were rare in the samples. Zooplankton density ranged from 100000 or more to 4 million ind. m2 and increased from the shallow inshore to deep offshore waters. Numerical dominance of cyclopoids and nauplius larvae was a common feature at all stations sampled. Most macrobenthic taxa were also widely distributed, although chaoborid and chironomid larvae were rare in the samples. Rastrineobola argentea (Pellegrin) and larval Lates niloticus (L.) ate mainly cyclopoid copepods, while cichlids showed a strong preference for adult insects. High ecological stability of the cyclopoids, and the zooplankton community in general, despite radical ecosystem changes in recent years, coupled with what appears to be high predation pressure, offers good prospects for the pelagic fishery in the lake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm and the National Fisheries Resources Research Institute (NaFIRRI) have an established collaborative arrangement where NaFIRRI provides technical back‐stopping to enable quarterly environment monitoring of the cage site as a mandatory requirement of the National Environment Management Authority (NEMA). The agreed study areas are selected physical‐chemical factors (water depth, water transparency/secchi depth, water temperature, dissolved oxygen, pH, conductivity, and nutrient status), algal community (including primary production), aquatic invertebrates (zooplankton and macro‐benthos) and the fish community. This report presents field observations made during the fourth quarter (October‐December) field survey undertaken during December 2013; along with scientific interpretation and discussion of the results in reference to possible impacts of the cage facility to the water environment quality and aquatic biota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested NaFIRRI to provide technical assistance to undertake regular environment monitoring of the cage site as a mandatory requirement under the NEMA conditions. NAFIRRI agreed to undertake regular environment surveys in the cage area covering selected physical‐chemical factors (water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity, nutrient status), algal aquatic invertebrates (micro‐invertebrates/zooplankton and macro‐benthos) and fish communities. During the year 2013, it was agreed with management to undertake quarterly environment monitoring surveys. However, the first quarter (January‐March 2013) survey was missed out due to late decision. The present report therefore covers the survey taken during the second quarter (April‐June 2013). Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located in northern Lake Victoria close to the headwaters of the River Nile. The proprietors of the farm have established a collaborative agreement with the National Fisheries Resources Research Institute (NaFIRRI) to undertake quarterly environment monitoring surveys of the fish cage site at Bugungu in the Napoleon Gulf. This activity is a mandatory requirement of the National Environment Management Authority (NEMA) of Uganda. Therefore NAFIRRI undertakes monitoring surveys once every quarter covering selected physical‐chemical parameters including water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity and nutrient status; algal, zooplankton, macro‐benthos and fish communities. While the first quarter survey of 2013 (January‐March) was missed out due to late decision, the second quarter monitoring survey was dully undertaken in May 2013 and a technical report was compiled and submitted to the client. The present report covers the third quarter survey (July‐September) undertaken in September 2013. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment quality and selected aquatic biota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested NaFIRRI to provide technical assistance to undertake regular environment monitoring of the cage site as is mandatory under the NEMA conditions. NAFIRRI agreed to undertake regular environment surveys in the cage area covering selected physical‐chemical factors i.e. water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity, redox potential and turbidity; nutrient status, algal and invertebrate communities (micro‐invertebrates/zooplankton and macro‐invertebrates/macro‐benthos) as well as fish community. The first year‐round quarterly surveys were completed for the year 2011. It was decided by SON management to change the frequency of the monitoring surveys to biannual starting in the year 2012 and the first such survey, which is the subject of this report, was undertaken in June 2012. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. SON

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm and the National Fisheries Resources Research Institute (NaFIRRI) have an established collaborative arrangement where NaFIRRI provides technical back‐stopping to enable quarterly environment monitoring of the cage site as a mandatory requirement of the National Environment Management Authority (NEMA). The agreed study areas are selected physical‐chemical factors (water depth, water transparency/secchi depth, water temperature, dissolved oxygen, pH, conductivity, and nutrient status), algal community (including primary production), aquatic invertebrates (zooplankton and macro‐benthos) and the fish community. This report presents field observations made during the first quarter (January‐March) field survey undertaken during March 2014; along with scientific interpretation and discussion of the results in reference to possible impacts of the cage facility to the water environment quality and aquatic biota. The

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growing of fish in cages is currently practiced in Uganda and was first introduced in northern Lake Victoria in 2010. An environment monitoring study was undertaken at Source of the Nile, a private cage fish farm, in Napoleon gulf, northern Lake Victoria. In-situ measurements of key environmental (temperature, dissolved oxygen, pH and conductivity) and biological (algae, zooplankton, macro-benthos) variables were made at three transects: Transect 1- the site with fish cages (WC); transect 2- upstream of the fish cages (USC-control) and Transect 3- downstream of the cages (DSC). Upstream and Downstream sites were located approximately 1.0 km from the fish cages. Environment parameters varied spatially and temporally but were generally within safe ranges for freshwater habitats. Higher concentrations of SRP (0.015-0.112 Mg/L) occurred at USC during February, September and at DSC in November; NO2-N (0.217- 0.042 mg/L) at USC and DSC in February and November; NH4-N (0.0054- 0.065 Mg/L) at WC and DSC in February, May and November. Algal bio-volumes were significantly higher at WC (F (2,780)=4.619; P=0.010). Zooplankton species numbers were consistently lower at WC with a significant difference compared to the control site (P=0.032). Macro-benthos abundance was consistently higher at the site with cages where mollusks and low-oxygen and pollution-tolerant chironomids were the dominant group. Higher algal biomass, concentration of low-oxygen/pollution-tolerant macro-benthos and depressed zooplankton diversity at WC suggested impacts from the fish cages on aquatic biota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report of Opening Session (pdf 42 KB) Report of Governing Council Meeting (pdf 89 KB) Reports of Science Board and Committees: Science Board (pdf 88 KB) Study Group on North Pacific Ecosystem Status Report and Regional Analysis Center Biological Oceanography Committee (pdf 57 KB) Working Group 14: Effective sampling of micronekton Advisory Panel on Marine Birds and Mammals Fishery Science Committee (pdf 37 KB) Working Group 16: Climate change, shifts to fish production, and fisheries management Marine Environmental Quality Committee (pdf 62 KB) Working Group 15: Ecology of Harmful Algal Blooms (HABs) in the North Pacific Physical Oceanography and Climate Committee (pdf 34 KB) Working Group 13: CO2 in the North Pacific Technical Committee on Data Exchange (pdf 24 KB) Implementation Panel on the CCCC Program (pdf 39 KB) BASS Task Team (pdf 32 KB) Advisory Panel on Iron Fertilization Experiment MODEL Task Team (pdf 22 KB) MONITOR Task Team (pdf 32 KB) Advisory Panel on Continuous Plankton Recorder Survey in the North Pacific REX Task Team (pdf 21 KB) Report of the Finance and Administration Committee (pdf 53 KB) List of Participants (pdf 67 KB) List of Acronyms (pdf 13 KB)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the grass carp (Ctenopharyngodon idella Val.)on aquatic plant biomass, water quality, phytoplankton, chlorophyll a, zooplankton and benthic fauna were investigated between May and September 2000 in earthen ponds at Cifteler- Sakaryabasi Aquaculture and Research Station. (PDF has 8 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview is provided of the literature of socio-economic relevance to the fisheries of Lake Victoria. It covers the following areas: marketing studies; management; changes to the structure of the fishery; and, base-line studies. The bibliography provides a guide to the more important documents on Lake Victoria's socio-economy and includes a total of 177 references

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The list provides addresses of institutions in Kenya, Tanzania and Uganda which are of managerial relevance to the fisheries of Lake Victoria, indicating the relevant area covered

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The findings are presented of a survey conducted regarding the fishers of Lake Victoria, which examined the relationships affecting supply flows of raw material on to the market, and also the characteristics of fishing activities and their effects on fish quality and distribution. Fish marketing plays a vital role in the lives of much of the lake basin's population, both in terms of employment and nutrition. The results of the survey comprise, in part, a base-line data set which will facilitate further research, analysis and management decision-making in relation to stakeholders of the lake's resources. Data collection, methods and research difficulties encountered are described and details given of a profile of a boat owner/renter and aslo of a profile of a crew member. The survey shows that Lake Victoria's fishery is one of very limited diversity. The fishers recount that they consistently target one or more of the 3 most common species within the lake (Nile perch, tilapia and dagaa) and very rarely consider any other species type. The largest proportion of fishers on the lake are Nile perch fishers; there is considerable demand for this species, and hence fishers have little incentive to either target alternative fish species, not to try and establish firm marketing outlets through the creation of arrangements with their principal buyers. In Kenyan waters, however, the number of Nile perch fishers is equaled by the number of dagaa fishers; this fish now commands a considerable portion of the market for fish from Lake Victoria through its availability as well as its relatively low prices. The tilapia fishery is in decline, and all 3 riparian states would not appear to be attracting investment almost certainly as a result of declining catches. For many of those working in Lake Victoria's fishery, the problems faced appear most often to be associated with the vagaries of an unstable market which may rise or fall depending on the state of the international market or the state of access roads to fish landings. (PDF contains 42 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limnological studies in Lake Victoria (Kenyan portion) have been sporadic. Water quality and nutrient dynamics studies are being undertaken in fifteen sampling sites that have been divided into four ecological zones namely: Nyanza Gulf, Rusinga Channel, open waters inshore and open waters. The ongoing study will show how the physical and chemical paramenters affect fish distribution and abundance.