9 resultados para Behavior patterns
em Aquatic Commons
Resumo:
Dosidicus gigas is a large pelagic cephalopod of the eastern Pacific that has recently undergone an unexpected, significant range expansion up the coast of North America. The impact that such a range expansion is expected to have on local fisheries and marine ecosystems has motivated a thorough study of this top predator, a squid whose lifestyle has been quite mysterious until recently. Unfortunately, Dosidicus spends daylight hours at depths prohibitive to making observations without significant artificial interference. Observations of this squid‟s natural behaviors have thus far been considerably limited by the bright illumination and loud noises of remotely-operated-vehicles, or else the presence of humans from boats or with SCUBA. However, recent technological innovations have allowed for observations to take place in the absence of humans, or significant human intrusion, through the use of animal-borne devices such as National Geographic‟s CRITTERCAM. Utilizing the advanced video recording and data logging technology of this device, this study seeks to characterize unknown components of Dosidicus gigas behavior at depth. Data from two successful CRITTERCAM deployments reveal an assortment of new observations concerning Dosidicus lifestyle. Tri-axial accelerometers enable a confident description of Dosidicus orientation during ascents, descents, and depth maintenance behavior - previously not possible with simple depth tags. Video documentation of intraspecific interactions between Dosidicus permits the identification of ten chromatic components, a previously undescribed basal chromatic behavior, and multiple distinct body postures. And finally, based on visualizations of spermatophore release by D. gigas and repetitive behavior patterns between squid pairs, this thesis proposes the existence of a new mating behavior in Dosidicus. This study intends to provide the first glimpse into the natural behavior of Dosidicus, establishing the groundwork for a comprehensive ethogram to be supported with data from future CRITTERCAM deployments. Cataloguing these behaviors will be useful in accounting for Dosidicus‟ current range expansion in the northeast Pacific, as well as to inform public interest in the impacts this expansion will have on local fisheries and marine ecosystems.
Resumo:
Thirty largemouth bass ( Micropterus salmoide s Lacepde) were implanted with radio tags in late October 2003 in two coves of Lake Seminole, Georgia, and tracked over a 24-hour period about every 10 days to determine their response to herbicide application. After five weeks of tracking, hydrilla ( Hydrilla verticillata Royle) in each cove was treated in early December 2003 with dipotassium salt of endothall (Aquathol K; 7-oxabicyclo [2.2.1] heptane-2,3-dicarboxylic acid) at a rate of 3.5 ppm. Largemouth bass were tracked during application and tracking continued for three months post treatment to assess effects of herbicide treatment on activity patterns. The treatment in Desser Cove successfully reduced hydrilla in approximately half the cove. However, the treatment in Peacock Lake completely eliminated all submersed aquatic vegetation (SAV) by April 2004. Movement and activity centers remained similar between treatment periods in Desser Cove, but increased after treatment in Peacock Lake. Depth occupied by telemetered fish decreased after Aquathol K treatment in both coves. In general, behavior of largemouth bass did not change appreciably during treatment, and only minor changes were observed in the posttreatment period in Peacock Lake, where all SAV was eliminated. Fish showed little attraction to or movement away from treatment areas, and fish migration from either cove was nil after treatment. Application of Aquathol K and subsequent reduction of SAV had little effect on largemouth bass behavior or movement. (PDF has 8 pages.)
Resumo:
Radio and sonic telemetry were used to investigate the tidal orientation, rate of movement (ROM), and surfacing behavior of nine Kemp's ridley turtles, Lepidochelys kempii, tracked east of the Cedar Keys, Florida. The mean of mean turtle bearings on incoming (48 ± 49 0) and falling (232 ± 41 0) tides was significantly oriented to the mean directions of tidal flow (37±9°, P<0.0025, and 234±9 0, P<0.005, respectively). Turtles had a mean ROM of 0.44±0.33 km/h (range: 0.004-1.758 km/h), a mean surface duration of 18± 15 s (range: 1-88 s), and a mean submergence duration of 8.4± 6.4 min (range: 0.2-60.0 min). ROM was negatively correlated with surface and submergence durations and positively correlated with the number of surfacings. Furthermore, ROMs were higher and surface and submergence durations were shorter during the day. Daily activities of turtles were attributed to food acquisition and bioenergetics.
Resumo:
Despite its recreational and commercial importance, the movement patterns and spawning habitats of winter flounder (Pseudopleuronectes americanus) in the Gulf of Maine are poorly understood. To address these uncertainties, 72 adult winter flounder (27–48 cm) were fitted with acoustic transmitters and tracked by passive telemetry in the southern Gulf of Maine between 2007 and 2009. Two sympatric contingents of adult winter flounder were observed, which exhibited divergent spawning migrations. One contingent remained in coastal waters during the spawning season, while a smaller contingent of winter flounder was observed migrating to estuarine habitats. Estuarine residence times were highly variable, and ranged from 2 to 91 days (mean=28 days). Flounder were nearly absent from the estuary during the fall and winter months and were most abundant in the estuary from late spring to early summer. The observed seasonal movements appeared to be strongly related to water temperature. This is the first study to investigate the seasonal distribution, migration, and spawning behavior of adult winter flounder in the Gulf of Maine by using passive acoustic telemetry. This approach offered valuable insight into the life history of this species in nearshore and estuarine habitats and improved the information available for the conservation and management of this species.
Resumo:
Most shallow-dwelling tropical marine fishes exhibit different activity patterns during the day and night but show similar transition behavior among habitat sites despite the dissimilar assemblages of the species. However, changes in species abundance, distribution, and activity patterns have only rarely been examined in temperate deepwater habitats during the day and night, where day-to-night differences in light intensity are extremely slight. Direct-observation surveys were conducted over several depths and habitat types on Heceta Bank, the largest rocky bank off the Oregon coast. Day and night fish community composition, relative density, and activity levels were compared by using videotape footage from a remotely operated vehicle (ROV) operated along paired transects. Habitat-specific abundance and activity were determined for 31 taxa or groups. General patterns observed were similar to shallow temperate day and night studies, with an overall increase in the abundance and activity of fishes during the day than at night, particularly in shallower cobble, boulder, and rock ridge habitats. Smaller schooling rockfishes (Sebastes spp.) were more abundant and active in day than in night transects, and sharpchin (S. zacentrus) and harlequin (S. variegatus) rockfish were significantly more abundant in night transects. Most taxa, however, did not exhibit distinct diurnal or nocturnal activity patterns. Rosethorn rockfish (S. helvomaculatus) and hagfishes (Eptatretus spp.) showed the clearest diurnal and nocturnal activity patterns, respectively. Because day and night distributions and activity patterns in demersal fishes are likely to influence both catchability and observability in bottom trawl and direct-count in situ surveys, the patterns observed in the current study should be considered for survey design and interpretation.
Resumo:
Thirty-three skipjack tuna (Katsuwonus pelamis) (53−73 cm fork length) were caught and released with implanted archival tags in the eastern equatorial Pacific Ocean during April 2004. Six skipjack tuna were recap-tured, and 9.3 to 10.1 days of depth and temperature data were down-loaded from five recovered tags. The vertical habitat-use distributions indicated that skipjack tuna not associated with floating objects spent 98.6% of their time above the thermocline (depth=44 m) during the night, but spent 37.7% of their time below the thermocline during the day. When not associated with floating objects, skipjack tuna displayed repetitive bounce-diving behavior to depths between 50 and 300 m during the day. The deepest dive recorded was 596 m, where the ambient temperature was 7.7°C. One dive was particularly remarkable because the fish contin-uously swam for 2 hours below the thermocline to a maximum depth of 330 m. During that dive, the ambient temperature reached a low of 10.5°C, and the peritoneal cavity temperature reached a low of 15.9°C. The vertical movements and habitat use of skipjack tuna, revealed in this study, provide a much greater understanding of their ecological niche and catchability by purse-seine fisheries.
Resumo:
In the Caribbean, many coral reef associated fishes have been observed making diel migrations, yet little is known about the detailed movement pathways and space use patterns of individual fish. Often these migrations occur along temporally or spatially consistent corridors that connect preferred resting and foraging habitats. Recent analysis of gut contents from Haemulids and Lutjanids, has provided evidence that these species forage in seagrass beds and other habitats near their coral reef refuges. Few studies have provided direct and spatially explicit evidence of nocturnal migrations and detailed day and night space use patterns for individual fish. This study integrated manual acoustic telemetry to track two common reef species, the bluestriped grunt (Haemulon sciurus) and schoolmaster snapper (Lutjanus apodus) throughout their daily home range. Space use patterns of these species were then examined using Geographical Information System (GIS) tools to link movement behavior to seascape structure derived in a benthic habitat map. This study represents a novel integration of spatial technologies to enhance our understanding of the movement ecology of adult H. sciurus and L. apodus.
Resumo:
We investigated the migration and behavior of young Pacific bluefin tuna (Thunnus orientalis) using archival tags that measure environmental variables, record them in memory, and estimate daily geographical locations using measured light levels. Swimming depth, ambient water temperature, and feeding are described in a companion paper. Errors of the tag location estimates that could be checked were –0.54° ±0.75° (mean ±SD) in longitude and –0.12° ±3.06° in latitude. Latitude, estimated automatically by the tag, was problematic, but latitude, estimated by comparing recorded sea-surface temperatures with a map of sea-surface temperature, was satisfactory. We concluded that the archival tag is a reliable tool for estimating location on a scale of about one degree, which is sufficient for a bluefin tuna migration study. After release, tagged fish showed a normal swimming behavioral pattern within one day and normal feeding frequency within one month. In addition, fish with an archival tag maintained weight-at-length similar to that of wild fish; however, their growth rate was less than that of wild fish. Of 166 fish released in the East China Sea with implanted archival tags, 30 were recovered, including one that migrated across the Pacific Ocean. Migration of young Pacific bluefin tuna appears to consist of two phases: a residency phase comprising more than 80% of all days, and a traveling phase. An individual young Pacific bluefin tuna was observed to cover 7600 km in one traveling phase that lasted more than two months (part of this phase was a trans-Pacific migration completed within two months). Many features of behavior in the traveling phase were similar to those in the residency phase; however the temperature difference between viscera and ambient temperature was larger, feeding was slightly more frequent, and dives to deeper water were more frequent.
Resumo:
Understanding the ontogenetic relationship between juvenile Steller sea lions (Eumetopias jubatus) and their foraging habitat is key to understanding their relationship to available prey and ultimately their survival. We summarize dive and movement data from 13 young-of-the-year (YOY) and 12 yearling Steller sea lions equipped with satellite dive recorders in the Gulf of Alaska and Aleutian Islands (n=18), and Washington (n=7) from 1994 to 2000. A total of 1413 d of transmission (x =56.5 d, range: 14.5–104.1 d) were received. We recorded 222,073 dives, which had a mean depth of 18.4 m (range of means: 5.8−67.9 m; SD=16.4). Alaska YOY dived for shorter periods and at shallower depths (mean depth=7.7 m, mean duration=0.8 min, mean maximum depth=25.7 m, and maximum depth=252 m) than Alaska yearlings (x =16.6 m, 0=1.1 min, x = 63.4 m, 288 m), whereas Washington yearlings dived the longest and deepest (mean depth=39.4 m, mean duration=1.8 min, mean maximum depth=144.5 m, and maximum depth=328 m). Mean distance for 564 measured trips was 16.6 km; for sea lions ≤10 months of age, trip distance (7.0 km) was significantly less than for those >10 months of age (24.6 km). Mean trip duration for 10 of the 25 sea lions was 12.1 h; for sea lions ≤10 months of age, trip duration was 7.5 h and 18.1 h for those >10 months of age. We identified three movements types: long-range trips (>15 km and >20 h), short-range trips (<15 km and <20 h) during which the animals left and returned to the same site, and transits to other haul-out sites. Long-range trips started around 9 months of age and occurred most frequently around the assumed time of weaning, whereas short-range trips happened almost daily (0.9 trips/day, n=426 trips). Transits began as early as 7 months of age, occurred more often after 9 months of age, and ranged between 6.5 and 454 km. The change in dive characteristics coincided with the assumed onset of weaning. These yearling sea lion movement patterns and dive characteristics suggest that immature Steller sea lions are as capable of making the same types of movements as adults.