6 resultados para Bayesian priors

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

English: We describe an age-structured statistical catch-at-length analysis (A-SCALA) based on the MULTIFAN-CL model of Fournier et al. (1998). The analysis is applied independently to both the yellowfin and the bigeye tuna populations of the eastern Pacific Ocean (EPO). We model the populations from 1975 to 1999, based on quarterly time steps. Only a single stock for each species is assumed for each analysis, but multiple fisheries that are spatially separate are modeled to allow for spatial differences in catchability and selectivity. The analysis allows for error in the effort-fishing mortality relationship, temporal trends in catchability, temporal variation in recruitment, relationships between the environment and recruitment and between the environment and catchability, and differences in selectivity and catchability among fisheries. The model is fit to total catch data and proportional catch-at-length data conditioned on effort. The A-SCALA method is a statistical approach, and therefore recognizes that the data collected from the fishery do not perfectly represent the population. Also, there is uncertainty in our knowledge about the dynamics of the system and uncertainty about how the observed data relate to the real population. The use of likelihood functions allow us to model the uncertainty in the data collected from the population, and the inclusion of estimable process error allows us to model the uncertainties in the dynamics of the system. The statistical approach allows for the calculation of confidence intervals and the testing of hypotheses. We use a Bayesian version of the maximum likelihood framework that includes distributional constraints on temporal variation in recruitment, the effort-fishing mortality relationship, and catchability. Curvature penalties for selectivity parameters and penalties on extreme fishing mortality rates are also included in the objective function. The mode of the joint posterior distribution is used as an estimate of the model parameters. Confidence intervals are calculated using the normal approximation method. It should be noted that the estimation method includes constraints and priors and therefore the confidence intervals are different from traditionally calculated confidence intervals. Management reference points are calculated, and forward projections are carried out to provide advice for making management decisions for the yellowfin and bigeye populations. Spanish: Describimos un análisis estadístico de captura a talla estructurado por edad, A-SCALA (del inglés age-structured statistical catch-at-length analysis), basado en el modelo MULTIFAN- CL de Fournier et al. (1998). Se aplica el análisis independientemente a las poblaciones de atunes aleta amarilla y patudo del Océano Pacífico oriental (OPO). Modelamos las poblaciones de 1975 a 1999, en pasos trimestrales. Se supone solamente una sola población para cada especie para cada análisis, pero se modelan pesquerías múltiples espacialmente separadas para tomar en cuenta diferencias espaciales en la capturabilidad y selectividad. El análisis toma en cuenta error en la relación esfuerzo-mortalidad por pesca, tendencias temporales en la capturabilidad, variación temporal en el reclutamiento, relaciones entre el medio ambiente y el reclutamiento y entre el medio ambiente y la capturabilidad, y diferencias en selectividad y capturabilidad entre pesquerías. Se ajusta el modelo a datos de captura total y a datos de captura a talla proporcional condicionados sobre esfuerzo. El método A-SCALA es un enfoque estadístico, y reconoce por lo tanto que los datos obtenidos de la pesca no representan la población perfectamente. Además, hay incertidumbre en nuestros conocimientos de la dinámica del sistema e incertidumbre sobre la relación entre los datos observados y la población real. El uso de funciones de verosimilitud nos permite modelar la incertidumbre en los datos obtenidos de la población, y la inclusión de un error de proceso estimable nos permite modelar las incertidumbres en la dinámica del sistema. El enfoque estadístico permite calcular intervalos de confianza y comprobar hipótesis. Usamos una versión bayesiana del marco de verosimilitud máxima que incluye constreñimientos distribucionales sobre la variación temporal en el reclutamiento, la relación esfuerzo-mortalidad por pesca, y la capturabilidad. Se incluyen también en la función objetivo penalidades por curvatura para los parámetros de selectividad y penalidades por tasas extremas de mortalidad por pesca. Se usa la moda de la distribución posterior conjunta como estimación de los parámetros del modelo. Se calculan los intervalos de confianza usando el método de aproximación normal. Cabe destacar que el método de estimación incluye constreñimientos y distribuciones previas y por lo tanto los intervalos de confianza son diferentes de los intervalos de confianza calculados de forma tradicional. Se calculan puntos de referencia para el ordenamiento, y se realizan proyecciones a futuro para asesorar la toma de decisiones para el ordenamiento de las poblaciones de aleta amarilla y patudo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized Bayesian population dynamics model was developed for analysis of historical mark-recapture studies. The Bayesian approach builds upon existing maximum likelihood methods and is useful when substantial uncertainties exist in the data or little information is available about auxiliary parameters such as tag loss and reporting rates. Movement rates are obtained through Markov-chain Monte-Carlo (MCMC) simulation, which are suitable for use as input in subsequent stock assessment analysis. The mark-recapture model was applied to English sole (Parophrys vetulus) off the west coast of the United States and Canada and migration rates were estimated to be 2% per month to the north and 4% per month to the south. These posterior parameter distributions and the Bayesian framework for comparing hypotheses can guide fishery scientists in structuring the spatial and temporal complexity of future analyses of this kind. This approach could be easily generalized for application to other species and more data-rich fishery analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular markers have been demonstrated to be useful for the estimation of stock mixture proportions where the origin of individuals is determined from baseline samples. Bayesian statistical methods are widely recognized as providing a preferable strategy for such analyses. In general, Bayesian estimation is based on standard latent class models using data augmentation through Markov chain Monte Carlo techniques. In this study, we introduce a novel approach based on recent developments in the estimation of genetic population structure. Our strategy combines analytical integration with stochastic optimization to identify stock mixtures. An important enhancement over previous methods is the possibility of appropriately handling data where only partial baseline sample information is available. We address the potential use of nonmolecular, auxiliary biological information in our Bayesian model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Priors are existing information or beliefs that are needed in Bayesian analysis. Informative priors are important in obtaining the Bayesian posterior distributions for estimated parameters in stock assessment. In the case of the steepness parameter (h), the need for an informative prior is particularly important because it determines the stock-recruitment relationships in the model. However, specifications of the priors for the h parameter are often subjective. We used a simple population model to derive h priors based on life history considerations. The model was based on the evolutionary principle that persistence of any species, given its life history (i.e., natural mortality rate) and its exposure to recruitment variability, requires a minimum recruitment compensation that enables the species to rebound consistently from low critical abundances (Nc). Using the model, we derived the prior probability distributions of the h parameter for fish species that have a range of natural mortality, recruitment variabilities, and Nt values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atlantic Croaker (Micropogonias undulatus) production dynamics along the U.S. Atlantic coast are regulated by fishing and winter water temperature. Stakeholders for this resource have recommended investigating the effects of climate covariates in assessment models. This study used state-space biomass dynamic models without (model 1) and with (model 2) the minimum winter estuarine temperature (MWET) to examine MWET effects on Atlantic Croaker population dynamics during 1972–2008. In model 2, MWET was introduced into the intrinsic rate of population increase (r). For both models, a prior probability distribution (prior) was constructed for r or a scaling parameter (r0); imputs were the fishery removals, and fall biomass indices developed by using data from the Multispecies Bottom Trawl Survey of the Northeast Fisheries Science Center, National Marine Fisheries Service, and the Coastal Trawl Survey of the Southeast Area Monitoring and Assessment Program. Model sensitivity runs incorporated a uniform (0.01,1.5) prior for r or r0 and bycatch data from the shrimp-trawl fishery. All model variants produced similar results and therefore supported the conclusion of low risk of overfishing for the Atlantic Croaker stock in the 2000s. However, the data statistically supported only model 1 and its configuration that included the shrimp-trawl fishery bycatch. The process errors of these models showed slightly positive and significant correlations with MWET, indicating that warmer winters would enhance Atlantic Croaker biomass production. Inconclusive, somewhat conflicting results indicate that biomass dynamic models should not integrate MWET, pending, perhaps, accumulation of longer time series of the variables controlling the production dynamics of Atlantic Croaker, preferably including winter-induced estimates of Atlantic Croaker kills.