8 resultados para Bat trapping
em Aquatic Commons
Resumo:
This annotated bibliography is intended to give as reasonably complete a review of the existing literature as possible, and to offer some practical guidance in the selection and operation of sediment traps in future monitoring programmes.
Resumo:
Siren and Amphiuma are two poorly known genera of aquatic salamanders that occur in the Southeastern United States. A primarily bottom-dwelling existence makes these salamanders difficult to detect with conventional sampling methodologies. Therefore, the current status of their populations is unknown. I compared the capture success of modified crayfish traps and plastic minnow traps in capturing these salamanders. In addition, a mark-recapture study of S. lacertina (Greater siren) and A. means (Two-toed amphiuma) was conducted at Okefenokee National Wildlife Refuge (southern Georgia) and at Katharine Ordway Preserve (north-central Florida) from August 2001 until September 2002. Crayfish traps were much more successful than minnow traps in catching siren and amphiuma. Crayfish traps yielded 270 captures for an overall capture success of 16%, whereas minnow traps yielded only 13 captures for an overall success rate of 0.05%. In addition, several marking techniques were evaluated, and of these, only passive integrated transponder (PIT) tags were retained for the duration of the study. Therefore, I recommend this marking technique for long-term monitoring of S. lacertina and A. means. Several variables were found to have significant effects on capture rates of salamanders. A. means were most often captured in summer and the number of captures was positively correlated with water temperature, water level, and rainfall. S. lacertina were most often captured during winter and spring. Number of captures was negatively correlated with water temperature, while no relationship was found with water level or rainfall. Trap day and baiting had no significant effect on number of A. means or S. lacertina captured. Recapture probabilities of both species were low, 0.025-0.03 for S. lacertina and 0.08-0.11 for A. means. Monthly survival rates were high, 0.77-0.97 for A. means and 0.88-1.00 for S. lacertina. Density estimates of 1.3 salamanders/m2 (S. lacertina) and 0.28 salamanders/m2 (A. means) were obtained for Lake Suggs using Jolly-Seber models. Siren and amphiuma make up a substantial part of wetland biomass and can impact many other wetland species. Thus, more attention must be focused on evaluating and monitoring their populations.
Resumo:
Time-lapse remote photo-sequences at 73-700 m depth off Palau, Western Caroline Islands, show that the caridean shrimp Heterocarpus laevigatus tends to be a solitary animal, occurring below ~350 m, that gradually accumulates around bait sites over a prolonged period. A smaller speies, H. ensifer, tends to move erratically in swarms, appearing in large numbers in the upper part of its range (<250 m) during the evening crepuscular period and disappearing at dawn. Trapping and photsequence data indicate the depth range of H. ensifer (during daylight) is ~250-550 M, while H. laevigatus ranges from 350 m to at least 800 m, along with the geryonid crab Chaceon granulatus. Combined trapping for Heterocarpus laevigatus and Chaceon granulatus, using a three-chamber box-trap and extended soak times (48-72 hr), may be an appropriate technique for small-scale deep-water fisheries along forereef slopes of Indo-Pacific archipelagoes.
Resumo:
Air flow at the land-sea-air interface influences to a large extent the atmospheric conditions that determine the transport, di lution, and trapping of natural and man-made air pollutants in the coastal areas of Monterey Bay and the Salinas Valley. Analysis of the hourly air flow on a daily and monthly basis indicates patterns of stagnation from midnight to noon of the fol lowing day with moderate to strong air flow during period 1300 to 2200. Throughout the year 1971 whenever flow is greater than 5 mph, the prevailing wind direction is onshore and from a westerly direction. Suggestions for urbanization and industrialization are made on the basis of an understanding of the atmospheric conditions which lead to trapping and dispersal of atmospheric waste. (27 page document)
Resumo:
Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)
Resumo:
Eel trapping seems to be one of the possibilities to replace the German eel trawl fishery on cutters in the Baltic with a high amount of unwanted and discarded bycatch by a more effective method. To prepare our own practical application the highly developed mechanized eel trap fishery on a commercial vessel in the Netherlands was studied. The results of this study are described in the this article.
Resumo:
Live African prawns Macrobrachium vollenhovenii were collected from Asejire reservoir (Nigeria) by trapping. After acclimatization, the prawns were differently amputated: some had their eye-stalks cut; some had their chelae cut; some had both eyestalks and chelae cut while some were intact which served as the control. Each set was placed under different levels of crude protein viz 15%; 20%; and 25%. Weekly weight changes were monitored. Results obtained were subjected to statistical analysis including analysis of variance (ANOVA). The results showed that prawns fed with 20% crude protein had the best growth rate. Specimens with the eyestalk and chelae removed also showed superior growth when compared with the others. Specimens that had their eyestalks removed were able to feed for 18 hours in the day while those with intact body fed for 6 hours during the same period. The amputation of the chelate appendages reduced considerably the cannibalistic urge in the prawns. This enabled a high number of prawns to be grown in the experimental tanks
Resumo:
The fabrication and operational techniques of Malian and Ndurutu traps mostly used by the fishermen in River Rima in north western Nigeria were evaluated through structured questionnaire and measurement of samples of the Data collected were analyzed using descriptive statistics. There was no standard in the dimensions of either of the traps. The traps were made of locally sourced materials, except the synthetic net of the Malian trap. About 81 and 80% of the respondents fabricated their Malian and Ndurutu traps, respectively. The major problems encountered in the structure and operation of the Malian trap included projection above water, stealing of catches and trap, and trapping of small sized fishes as indicated by 61.9, 47.6 and 28.6% of the respondents, respectively. In the case of the Ndurutu trap, 72.0, 48.0, 12.0 and 8.0% of the respondents respectively indicated poor durability, single entrance valve, destruction by cattle and instability in water, as the major problems encountered. As improvement measures for the Malian trap, the respondents suggested increase in number and size of valve (81.0%), horizontal positioning (57.1%) and square shape (47.6%) while 52.0% each suggested increase in number of entrance valve and netting of Ndurutu trap. The fishermen demonstrated ingenuity in the fabrication and operation of the traps, but they failed to initiate the required improvement. It is important to critically examine the designs, materials, costs and limitations of the traps and the suggestions of the fishermen, as basis for improvement on the technology of the traps