12 resultados para BRIGHT

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demersal fishes hauled up from depth experience rapid decompression. In physoclists, this can cause overexpansion of the swim bladder and resultant injuries to multiple organs (barotrauma), including severe exophthalmia (“pop-eye”). Before release, fishes can also be subjected to asphyxia and exposure to direct sunlight. Little is known, however, about possible sensory deficits resulting from the events accompanying capture. To address this issue, electroretinography was used to measure the changes in retinal light sensitivity, flicker fusion frequency, and spectral sensitivity in black rockfish (Sebastes melanops) subjected to rapid decompression (from 4 atmospheres absolute [ATA] to 1 ATA) and Pacific halibut (Hippoglossus stenolepis) exposed to 15 minutes of simulated sunlight. Rapid decompression had no measurable influence on retinal function in black rockfish. In contrast, exposure to bright light significantly reduced retinal light sensitivity of Pacific halibut, predominately by affecting the photopigment which absorbs the green wavelengths of light (≈520–580 nm) most strongly. This detriment is likely to have severe consequences for postrelease foraging success in green-wavelength-dominated coastal waters. The visual system of Pacific halibut has characteristics typical of species adapted to low light environments, and these characteristics may underlie their vulnerability to injury from exposure to bright light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of the Indian fisheries sector, both inland and marine, is discussed in detail, examining production trends and resource potential. Prospects for future development are also considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the light reflectance characteristics ofwaterhyacinth [Eichhornia crassipes (Mort.) Solms] and hydrilla [Hydrilla verticillata (L.F.) Royle] and the application of airborned videography with global positioning system (GPS) and geographic information system (GIS) technologies for distinguishing and mapping the distribution of these two aquatic weeds in waterways of southern Texas. Field reflectance measurements made at several locations showed that waterhyacinth generally had higher near-infrared (NIR) reflectance than associated plant species and water. Hydrilla had lower NIR reflectance than associated plant species and higher NIR reflectance than water. Reflectance measurements made on hydrilla plants submerged below the water surface had similar spectral characteristics to water. Waterhyacinth and hydrilla could be distinguished in color-infrared (CIR) video imagery where they had bright orange-red and reddish-brown image responses, respectively. Computer analysis of the imagery showed that waterhyacinth and hydrilla infestaions could be quantified. An accuracy assessment performed on the classified image showed an overall accuracy of 87.7%. Integration of the GPS with the video imagery permitted latitude/longitude coordinates of waterhyacinth and hydrilla infestation to be recorded on each image. A portion of the Rio Grande River in extreme southern Texas was flown with the video system to detect waterhyacinth and hydrilla infestaions. The GPS coordinates on the CIR video scenes depicting waterhyacinth and hydrilla infestations were entered into a GIS to map the distribution of these two noxious weeds in the Rio Grande River.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

EXECUTIVE SUMMARY: The Coastal Change Analysis Programl (C-CAP) is developing a nationally standardized database on landcover and habitat change in the coastal regions of the United States. C-CAP is part of the Estuarine Habitat Program (EHP) of NOAA's Coastal Ocean Program (COP). C-CAP inventories coastal submersed habitats, wetland habitats, and adjacent uplands and monitors changes in these habitats on a one- to five-year cycle. This type of information and frequency of detection are required to improve scientific understanding of the linkages of coastal and submersed wetland habitats with adjacent uplands and with the distribution, abundance, and health of living marine resources. The monitoring cycle will vary according to the rate and magnitude of change in each geographic region. Satellite imagery (primarily Landsat Thematic Mapper), aerial photography, and field data are interpreted, classified, analyzed, and integrated with other digital data in a geographic information system (GIS). The resulting landcover change databases are disseminated in digital form for use by anyone wishing to conduct geographic analysis in the completed regions. C-CAP spatial information on coastal change will be input to EHP conceptual and predictive models to support coastal resource policy planning and analysis. CCAP products will include 1) spatially registered digital databases and images, 2) tabular summaries by state, county, and hydrologic unit, and 3) documentation. Aggregations to larger areas (representing habitats, wildlife refuges, or management districts) will be provided on a case-by-case basis. Ongoing C-CAP research will continue to explore techniques for remote determination of biomass, productivity, and functional status of wetlands and will evaluate new technologies (e.g. remote sensor systems, global positioning systems, image processing algorithms) as they become available. Selected hardcopy land-cover change maps will be produced at local (1:24,000) to regional scales (1:500,000) for distribution. Digital land-cover change data will be provided to users for the cost of reproduction. Much of the guidance contained in this document was developed through a series of professional workshops and interagency meetings that focused on a) coastal wetlands and uplands; b) coastal submersed habitat including aquatic beds; c) user needs; d) regional issues; e) classification schemes; f) change detection techniques; and g) data quality. Invited participants included technical and regional experts and representatives of key State and Federal organizations. Coastal habitat managers and researchers were given an opportunity for review and comment. This document summarizes C-CAP protocols and procedures that are to be used by scientists throughout the United States to develop consistent and reliable coastal change information for input to the C-CAP nationwide database. It also provides useful guidelines for contributors working on related projects. It is considered a working document subject to periodic review and revision.(PDF file contains 104 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of plankton were taken from Broom Water in August 1997 after a sighting of medusae on 11th August. Broom Water is about 8 m wide, and extends 250 m from the main channel of the Thames, above the weir at Teddington. On 11th August medusae were so abundant that it was possible to collect 20 in ten minutes. They were rising to the surface in bright sunlight, then sinking slowly down through the water. Examination of a medusa's tentacles under a microscope revealed the presence of a commensal protozoan, a ciliate Trichodina pediculus. Over 20 species of phytoplankton were found in Broom Water. Most of the species are common and widespread, but it was a surprise to find Errerella bornhemiensis with its characteristic pyramidal colonies, which is a relatively rare species. Zooplankters in Broom Water consisted of Rotifera and Crustacea. Zooplankton is the main food of Craspedacusta and it was found that the crustaceans but not the rotifers did undergo significant changes during the period 11-19th August. The major changes were a big increase in the percentage of cyclopoids, and a marked decrease in Bosmina. This could be because the delicate cuticle of Bosmina is much more susceptible to the stinging cells of the medusae compared with the tougher exoskeleton of the cyclopoid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loxodes faces special problems in living close to the oxic-anoxic boundary. In tightly-stratified ponds like Priest Pot its optimum environment may be quite narrow and it can be displaced by the slightest turbulence. Loxodes cannot sense an O sub(2) gradient directly but its ability to perceive gravity allows it to make relatively long vertical migrations. It is also sensitive to light and oxygen and it uses these environmental cues to modulate the parameters of its random motility: in the dark, it aggregates at a low O sub(2) tension and in bright light it aggregates in anoxic water. The oxic-anoxic boundary is also a zone where O sub(2) may be a scarce and transient resource, but Loxodes) can switch to nitrate respiration and exploit the pool of nitrate that often exists close to the base of the oxycline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dosidicus gigas is a large pelagic cephalopod of the eastern Pacific that has recently undergone an unexpected, significant range expansion up the coast of North America. The impact that such a range expansion is expected to have on local fisheries and marine ecosystems has motivated a thorough study of this top predator, a squid whose lifestyle has been quite mysterious until recently. Unfortunately, Dosidicus spends daylight hours at depths prohibitive to making observations without significant artificial interference. Observations of this squid‟s natural behaviors have thus far been considerably limited by the bright illumination and loud noises of remotely-operated-vehicles, or else the presence of humans from boats or with SCUBA. However, recent technological innovations have allowed for observations to take place in the absence of humans, or significant human intrusion, through the use of animal-borne devices such as National Geographic‟s CRITTERCAM. Utilizing the advanced video recording and data logging technology of this device, this study seeks to characterize unknown components of Dosidicus gigas behavior at depth. Data from two successful CRITTERCAM deployments reveal an assortment of new observations concerning Dosidicus lifestyle. Tri-axial accelerometers enable a confident description of Dosidicus orientation during ascents, descents, and depth maintenance behavior - previously not possible with simple depth tags. Video documentation of intraspecific interactions between Dosidicus permits the identification of ten chromatic components, a previously undescribed basal chromatic behavior, and multiple distinct body postures. And finally, based on visualizations of spermatophore release by D. gigas and repetitive behavior patterns between squid pairs, this thesis proposes the existence of a new mating behavior in Dosidicus. This study intends to provide the first glimpse into the natural behavior of Dosidicus, establishing the groundwork for a comprehensive ethogram to be supported with data from future CRITTERCAM deployments. Cataloguing these behaviors will be useful in accounting for Dosidicus‟ current range expansion in the northeast Pacific, as well as to inform public interest in the impacts this expansion will have on local fisheries and marine ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent decades, hatchery-growout culture of oysters, Crassostrea virginica, and northern quahogs, Mercenaria mercenaria, has been commercially successful in Atlantic United States and oysters in Atlantic Canada. Culturists have not had success, as yet, with northern bay scallops, Argopecten irradians irradians. Large mortalities occur during the culture process, mainly because the scallops are relatively delicate and some die when handled. In addition, too little edible meat, i.e. the adductor muscle, is produced for the culture operation to be profitable. However, three companies, one in Massachusetts, one in New Brunswick, and one on Prince Edward Island, Canada, have discovered that they can produce bay scallops successfully by harvesting them when partially-to fully-grown and selling them whole. In restaurants, the scallops are cooked and served with all their meats (adductor muscles and rims) and also with the shells, which have been genetically-bred for bright colors. The scallop seed are produced in hatcheries and then grown in lantern or pearl nets and cages to market size. Thus far, production has been relatively small, just beyond the pilot-scale, until a larger demand develops for this product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2001, representative samples of adult Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch) populations at Bonneville Dam were collected. Fish were trapped, anesthetized, sampled for scales and biological data, revived, and then released adult migrating salmonids. Scales were examined to estimate age composition; the results contributed to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis of chinook salmon, four-year-old fish (from brood year [BY] 1997) comprised 88% of the spring chinook, 67% of the summer chinook, and 42% of the Bright fall chinook salmon population. Five-year-old fish (BY 1996) comprised 9% of the spring chinook, 14% of the summer chinook, and 9% of the fall chinook salmon population. The sockeye salmon population at Bonneville was predominantly four-year-old fish (81%), with 18% returning as five-year-olds in 2001. The coho salmon population was 96% three-year-old fish (Age 1.1). Length analysis of the 2001 returns indicated that chinook salmon with a stream-type life history are larger (mean length) than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period for returning 2001 chinook salmon were analyzed. Chinook salmon of age classes 0.2 and 1.3 show a significant increase in mean length over time. Age classes 0.1, 0.3, 0.4, 1.1, 1.2, and 1.4 show no significant change over time. A year class regression over the past 12 years of data was used to predict spring, summer, and Bright fall chinook salmon population sizes for 2002. Based on three-year-old returns, the relationship predicts four-year-old returns of 132,600 (± 46,300, 90% predictive interval [PI]) spring chinook and 44,200 (± 11,700, 90% PI) summer chinook salmon for the 2002 runs. Based on four-year-old returns, the relationship predicts five-year-old returns of 87,800 (± 54,500, 90% PI) spring, 33,500 (± 11,500, 90% PI) summer, and 77,100 (± 25,800, 90% PI) Bright fall chinook salmon for the 2002 runs. The 2002 run size predictions should be used with caution; some of these predictions are well beyond the range of previously observed data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2000, representative samples of adult Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch), populations were collected at Bonneville Dam. Fish were trapped, anesthetized, sampled for scales and biological data, allowed to revive, and then released. Scales were examined to estimate age composition and the results contribute to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis, four-year-old fish (from brood year (BY) 1996) were estimated to comprise 83% of the spring chinook, 31% of the summer chinook, and 32% of the upriver bright fall chinook salmon population. Five-year-old fish (BY 1995) were estimated to comprise 2% of the spring chinook, 26% of the summer chinook, and 40% of the fall chinook salmon population. Three-year-old fish (BY 1997) were estimated to comprise 14% of the spring chinook, 42% of the summer chinook, and 17% of the fall chinook salmon population. Two-year-olds accounted for approximately 11% of the fall chinook population. The sockeye salmon population sampled at Bonneville was predominantly four-year-old fish (95%), and the coho salmon population was 99.9% three-year-old fish (Age 1.1). Length analysis of the 2000 returns indicated that chinook salmon with a stream-type life history are larger (mean length) than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period were also analysis for returning 2000 chinook salmon. Fish of age classes 0.2, 1.1, 1.2, and 1.3 have a significant increase in mean length over time. Age classes 0.3 and 0.4 have no significant change over time and age 0.1 chinook salmon had a significant decrease in mean length over time. A year class regression over the past 11 years of data was used to predict spring and summer chinook salmon population sizes for 2001. Based on three-year-old returns, the relationship predicts four-year-old returns of 325,000 (± 111,600, 90% Predictive Interval [PI]) spring chinook and 27,800 (± 29,750, 90% PI) summer chinook salmon. Based on four-year-old returns, the relationship predicts five-year-old returns of 54,300 (± 40,600, 90% PI) spring chinook and 11,000 (± 3,250, 90% PI) summer chinook salmon. The 2001 run size predictions used in this report should be used with caution, these predictions are well beyond the range of previously observed data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2002, representative samples of migrating Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch) adult populations were collected at Bonneville Dam. Fish were trapped, anesthetized, sampled for scales and biological data, revived, and then released. Scales were examined to estimate age composition; the results contributed to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis of chinook salmon, four-year-old fish (from brood year [BY] 1998) comprised 86% of the spring chinook, 51% of the summer chinook, and 51% of the bright fall chinook salmon population. Five-year-old fish (BY 1997) comprised 13% of the spring chinook, 43% of the summer chinook, and 11% of the bright fall chinook salmon population. The sockeye salmon population at Bonneville was predominantly five-year-old fish (55%), with 40% returning as four-year-olds in 2002. For the coho salmon population, 88% of the population was three-year-old fish of age class 1.1, while 12% were age class 1.0. Length analysis of the 2002 returns indicated that chinook salmon with a stream-type life history are larger (mean length) at age than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period for returning 2002 chinook salmon were analyzed. Chinook salmon of age classes 1.2 and 1.3 show a significant increase in mean length over the duration of the migration. A year class regression over the past 14 years of data was used to predict spring, summer, and bright fall chinook salmon population sizes for 2003. Based on three-year-old returns, the relationship predicts four-year-old returns of 54,200 (± 66,600, 90% predictive interval [PI]) spring chinook, 23,800 (± 19,100, 90% PI) summer, and 169,100 (± 139,500, 90% PI) bright fall chinook salmon for the 2003 runs. Based on four-year-old returns, the relationship predicts five-year-old returns of 36,300 (± 35,400, 90% PI) spring, 63,800 (± 10,300, 90% PI) summer, and 91,100 (± 69,400, 90% PI) bright fall chinook salmon for the 2003 runs. The 2003 run size predictions should be used with caution; some of these predictions are well beyond the range of previously observed data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In commerce, great importance is given to the color of the dry prawn pulp in its quality evaluation. The possible correlation between this color factor to the iced or not iced condition of the raw prawn used, is investigated. The study reveals that as the icing period of the raw material increases the color of the finished product proportionately intensifies to a bright red compared to light brownish yellow or orange color of the product from the not iced prawn, and at the same time the other characteristics like flavor and taste deteriorates as the time of icing advances. This finding tends to show that the color factor does not reflect the true quality of prawn pulp. Based on chemical data it is suggested that "browning" due to Maillard reaction may have an important role in this color phenomena.