1 resultado para BIOCLIMATE ENVELOPE MODELS
em Aquatic Commons
Resumo:
Rising global temperatures threaten the survival of many plant and animal species. Having already risen at an unprecedented rate in the past century, temperatures are predicted to rise between 0.3 and 7.5C in North America over the next 100 years (Hawkes et al. 2007). Studies have documented the effects of climate warming on phenology (timing of seasonal activities), with observations of early arrival at breeding grounds, earlier ends to the reproductive season, and delayed autumnal migrations (Pike et al. 2006). In addition, for species not suited to the physiological demands of cold winter temperatures, increasing temperatures could shift tolerable habitats to higher latitudes (Hawkes et al. 2007). More directly, climate warming will impact thermally sensitive species like sea turtles, who exhibit temperature-dependent sexual determination. Temperatures in the middle third of the incubation period determine the sex of sea turtle offspring, with higher temperatures resulting in a greater abundance of female offspring. Consequently, increasing temperatures from climate warming would drastically change the offspring sex ratio (Hawkes et al. 2007). Of the seven extant species of sea turtles, three (leatherback, Kemp’s ridley, and hawksbill) are critically endangered, two (olive ridley and green) are endangered, and one (loggerhead) is threatened. Considering the predicted scenarios of climate warming and the already tenuous status of sea turtle populations, it is essential that efforts are made to understand how increasing temperatures may affect sea turtle populations and how these species might adapt in the face of such changes. In this analysis, I seek to identify the impact of changing climate conditions over the next 50 years on the availability of sea turtle nesting habitat in Florida given predicted changes in temperature and precipitation. I predict that future conditions in Florida will be less suitable for sea turtle nesting during the historic nesting season. This may imply that sea turtles will nest at a different time of year, in more northern latitudes, to a lesser extent, or possibly not at all. It seems likely that changes in temperature and precipitation patterns will alter the distribution of sea turtle nesting locations worldwide, provided that beaches where the conditions are suitable for nesting still exist. Hijmans and Graham (2006) evaluate a range of climate envelope models in terms of their ability to predict species distributions under climate change scenarios. Their results suggested that the choice of species distribution model is dependent on the specifics of each individual study. Fuller et al. (2008) used a maximum entropy approach to model the potential distribution of 11 species in the Arctic Coastal Plain of Alaska under a series of projected climate scenarios. Recently, Pike (in press) developed Maxent models to investigate the impacts of climate change on green sea turtle nest distribution and timing. In each of these studies, a set of environmental predictor variables (including climate variables), for which ‘current’ conditions are available and ‘future’ conditions have been projected, is used in conjunction with species occurrence data to map potential species distribution under the projected conditions. In this study, I will take a similar approach in mapping the potential sea turtle nesting habitat in Florida by developing a Maxent model based on environmental and climate data and projecting the model for future climate data. (PDF contains 5 pages)