7 resultados para Asynchronous motors
em Aquatic Commons
Resumo:
This dissertation: 1) determines the factor(s) responsible for spawning induction in NematosteJla vectensis; 2) isolates, describes, and documents the source of jelly from egg masses of N. vectensis; and 3) describes N. vectensis' early development. Namatostella vectensis were maintained on a 7-day mussel feeding/water change regime over 159 days. Within 36 hours of mussel feeding/water change. 69.1% of females and 78.5% of males spawned reliably. Through manipulation of feeding, water change, oxygen and nitrogenous waste concentrations, spawning induction was found to be triggered by the oxygen concentration associated with water change, and not by feeding. Ammonia, anemones' major waste product, inhibited this induction in a concentration-dependent manner. Female N. vectensis release eggs in a persistent jellied egg mass which is unique among the Actiniaria. The major component of this egg mass jelly was a positive periodic acid-Schiffs staining, 39.5-40.5 kD glycoprotein. Antibodies developed in rabbits against this glycoprotein bound to jelly of intact egg masses and to granules (~ 2.8 IJm in diameter) present in female anemone mesenteries and their associated filaments. Antibodies did not label male tissues. Nematostella vecfensis embryos underwent first karyokinesis -60 minutes following the addition of sperm to eggs. Second nuclear division took place, followed by first cleavage, 90-120 minutes later. Each of the 4 blastomeres that resulted from first cleavage contained a single nucleus. Arrangement of these blastomeres ranged from radial to pseudospiral. Embryonic development was both asynchronous and holoblastic. Following formation of the 4-cell stage, 71% of embryos proceeded to cleave again to form an 8-cell stage. In each of the remaining 29% of embryos, a fusion of from 2-4 blastomeres resulted in 4 possible patterns which had no affect on either cleavage interval timing or subsequent development. The fusion event was not due to ooplasmic segregation. Blastomeres isolated from 4-celled embryos were regulative and developed into normal planula larvae and juvenile anemones that were 1/4 the size of those that developed from intact 4-celled embryos. Embryos exhibiting the fusion phenomenon were examined at the fine structural level. The fusion phenomenon resulted in formation of a secondary syncytium and was not a mere compaction of blastomeres.
Resumo:
This article covers the biology and the history of the bay scallop habitats and fishery from Massachusetts to North Carolina. The scallop species that ranges from Massachusetts to New York is Argopecten irradians irradians. In New Jersey, this species grades into A. i. concentricus, which then ranges from Maryland though North Carolina. Bay scallops inhabit broad, shallow bays usually containing eelgrass meadows, an important component in their habitat. Eelgrass appears to be a factor in the production of scallop larvae and also the protection of juveniles, especially, from predation. Bay scallops spawn during the warm months and live for 18–30 months. Only two generations of scallops are present at any time. The abundances of each vary widely among bays and years. Scallops were harvested along with other mollusks on a small scale by Native Americans. During most of the 1800’s, people of European descent gathered them at wading depths or from beaches where storms had washed them ashore. Scallop shells were also and continue to be commonly used in ornaments. Some fishing for bay scallops began in the 1850’s and 1860’s, when the A-frame dredge became available and markets were being developed for the large, white, tasty scallop adductor muscles, and by the 1870’s commercial-scale fishing was underway. This has always been a cold-season fishery: scallops achieve full size by late fall, and the eyes or hearts (adductor muscles) remain preserved in the cold weather while enroute by trains and trucks to city markets. The first boats used were sailing catboats and sloops in New England and New York. To a lesser extent, scallops probably were also harvested by using push nets, picking them up with scoop nets, and anchor-roading. In the 1910’s and 1920’s, the sails on catboats were replaced with gasoline engines. By the mid 1940’s, outboard motors became more available and with them the numbers of fishermen increased. The increases consisted of parttimers who took leaves of 2–4 weeks from their regular jobs to earn extra money. In the years when scallops were abundant on local beds, the fishery employed as many as 10–50% of the towns’ workforces for a month or two. As scallops are a higher-priced commodity, the fishery could bring a substantial amount of money into the local economies. Massachusetts was the leading state in scallop landings. In the early 1980’s, its annual landings averaged about 190,000 bu/yr, while New York and North Carolina each landed about 45,000 bu/yr. Landings in the other states in earlier years were much smaller than in these three states. Bay scallop landings from Massachusetts to New York have fallen sharply since 1985, when a picoplankton, termed “brown tide,” bloomed densely and killed most scallops as well as extensive meadows of eelgrass. The landings have remained low, large meadows of eelgrass have declined in size, apparently the species of phytoplankton the scallops use as food has changed in composition and in seasonal abundance, and the abundances of predators have increased. The North Carolina landings have fallen since cownose rays, Rhinoptera bonsais, became abundant and consumed most scallops every year before the fishermen could harvest them. The only areas where the scallop fishery remains consistently viable, though smaller by 60–70%, are Martha’s Vineyard, Nantucket, Mass., and inside the coastal inlets in southwestern Long Island, N.Y.
Resumo:
We build on recent efforts to standardize maturation staging methods through the development of a field-proof macroscopic ovarian maturity index for Haddock (Melanogrammus aeglefinus) for studies on diel spawning periodicity. A comparison of field and histological observations helped us to improve the field index and methods, and provided useful insight into the reproductive biology of Haddock and other boreal determinate fecundity species. We found reasonable agreement between field and histological methods, except for the regressing and regenerating stages (however, differentiation of these 2 stages is the least important distinction for determination of maturity or reproductive dynamics). The staging of developing ovaries was problematic for both methods partly because of asynchronous oocyte hydration during the early stage of oocyte maturation. Although staging on the basis of histology in a laboratory is generally more accurate than macroscopic staging methods in the field, we found that field observations can uncover errors in laboratory staging that result from bias in sampling unrepresentative portions of ovaries. For 2 specimens, immature ovaries observed during histological examination were incorrectly assigned as regenerating during macroscopic staging. This type of error can lead to miscalculation of length at maturity and of spawning stock biomass, metrics that are used to characterize the state of a fish population. The revised field index includes 3 new macroscopic stages that represent final oocyte maturation in a batch of oocytes and were found to be reliable for staging spawning readiness in the field. The index was found to be suitable for studies of diel spawning periodicity and conforms to recent standardization guidelines.
Resumo:
The Indo-Pacific lionfish, Pterois miles and P. volitans, have recently invaded the U.S. east coast and the Caribbean and pose a significant threat to native reef fish communities. Few studies have documented reproduction in pteroines from the Indo-Pacific. This study provides a description of oogenesis and spawn formation in P. miles and P. volitans collected from offshore waters of North Carolina, U.S.A and the Bahamas. Using histological and laboratory observations, we found no differences in reproductive biology between P. miles and P. volitans. These lionfish spawn buoyant eggs that are encased in a hollow mass of mucus produced by specialized secretory cells of the ovarian wall complex. Oocytes develop on highly vascularized peduncles with all oocyte stages present in the ovary of spawning females and the most mature oocytes placed terminally, near the ovarian lumen. Given these ovarian characteristics, these lionfish are asynchronous, indeterminate batch spawners and are thus capable of sustained reproduction throughout the year when conditions are suitable. This mode of reproduction could have contributed to the recent and rapid establishment of these lionfish in the northwestern Atlantic and Caribbean.
Resumo:
Benni (Barbus sharpeyi) is valuable fish that Khuzastan fisheries office propagated it artificially in Susangerd Fish Propagation Center every year. Pituitary gland is used for this aim but female fish lost their fertilization power after 2-3 years, so in present research, new hormone, that is called Ghrelin. The aims of this research are histology, hormonal, zygote and larval generation studies and comparing the results with each other. Ghrelin is a multifunctional peptidyl hormone which increases GTH-II in fish, amphibian, and birds and mammalian so its effect on Benni sexual maturation was studied. Human Ghrelin (hGRL) was obtained from ANASPEC, Canada, with 28 amino acids. In the present study, three levels of ghrelin including 0 (sham treatments), 0.10 (treatment 1) and 0.15 μg/g (treatment 2) body wt and one level of pituitary gland 4000 μg/g (pituitary treatment) with two replications were used. 56 specimens were injected intraperitonealy and their ghrelin level was evaluated immediately after injection and after 24 h. Control fish(n=16) were just injected by physiological saline. For hormonal studies sham and experimental fish(n=40) were anesthetized with MS-222 at a concentration of 250 mg l-1, and blood samples were collected and kept at 4ْC, then spun to collect serum. Serum samples were stores at -20ْC until the RIA for CTH-II. For histology studies immediately after injection a piece of ovary was collected from control fish (Sham zero) after being anesthetized. The sampled ovaries were fixed in Buin solution and embedded in paraffin, and stained to Sections of 5–6 μm using haematoxylin and eosin. The ovarian samples were performed with a compound microscope. Histology and micrometry studies had done. The mature oocytes had given from mature fish, then weighted and the working fecundity were counted. The mature oocytes fertilized, the eggs were incubated and the percentage of fertilization was calculated. After 72h the eggs hatched and the percentage of hatch was counted. The percentage of hindrance was calculated after 6 days. Hormonal results indicate that ghrelin and pituitary increase significantly the GTH-II level in comparison to sham. Macroscopic observations (before taking ovary) showed that ovaries with green colored have couple oval structure located in the abdominal cavity. Microscopic studies of dissected ovaries indicated simultaneous growth of 127 oocytes with 6 stages. The type of the ovary is asynchronous. The results indicated that both of the ghrelin treatment increased the percentage of mature follicles followed by decrease of immature follicles. There were significant differences (P<0.05) between the number of mature and immature follicles. Average diameter of follicle in both of the ghrelin treatment was significantly (P<0.05) declined in the stages of the vitellogenesis when the result compared to the other treatment. Just treatment 1 and pituitary treatment can give mature oocytes. The fecundity of pituitary treatment significantly increase in comparision to ghrelin treatment (P<0.05). In food-restricted fish where endogenous ghrelin levels are known to be increased, a chronic administration of ghrelin induces overt negative effect in releasing mature oocytes. The percentage of fertilization was significantly increase (P<0.05) in ghrelin t. in comparison to pituitary t. and the percentage of hatch was significantly increase (P<0.05) in pituitary t. in comparison to ghrelin t. There was no significant difference (P>0.05) in terms of percentage of hindrance between treatments. In conclusion, the present study demonstrated that ghrelin has positive effect on the level of GTH-II, oocyte maturation, ovarian vitellogenesis and the number of mature follicles of Barbus sharpeyi ovary. Increasing of the mature follicles number reduces their average diameter, indicating stimulating effect of ghrelin in sexual maturation of Barbus sharpeyi.The ghrelin and pituitary treatment have equal chance in the post-stage of spawning.
Resumo:
This study was carried out to seasonal determination of some morphological characteristics, Seasonal fecundity, Seasonal fluctuations of vertebrate-type steroids and seasonal analysis of gonadal histology in both female and male sexes of freshwater crayfish (Astacus leptodactylus Eschscholtz 1823) in the area of Aras dam Lake. Crayfish were collected respectively in June, August, November (2011) and January (2012). The average length and weight of male crayfish was higher than that of females. %GSI of females fluctuated within an extended range (between 0.6 and 13.5% from June to January). Both of synchronous and asynchronous ovaries were seen in August sampled ovaries; however asynchronous form was higher than another. The annual reproductive cycle of male A. leptodactylus was surveyed by study on the seasonal changes of the external appearance of the testes and vasa deferentia, fluctuations in the gonadosomatic index (GSI%) and the histological analysis of the male reproductive system. Based on the histological differentiation of testis, spermatogenisis devided to 5 separated stages. The findings suggested asynchronous testis in the species A.leptodactylus. The presence of primary spermatophore layer may help keeping spermatozoa alive while the secondary spermatophore layer may produces spermatophore or synthesize of acellular material which forms spermatophre. Pleopodal fecundity was 37.3%lower than ovarian fecundity observed. The significantly higher number of eggs attached to 3rd and 4th pairs of pleopods. The egg number and gonadosomatic index increased with female size while egg weight and egg diameter didn’t increase with female size. Hemolymph levels of 17β-estradiol and progesterone followed a similar fluctuation pattern with % GSI in females, while testosterone didn’t follow the mentioned pattern. The testis of November sampled crayfish presented significantly higher gonadosomatic (%GSI) index (P < 0.05).The most observed gonadosomaticindices were 13.5%(forfemales) and 1.21% (for males, in autumn. Althogh the lowest GSI was (0.50%) formales in spring and (0.26%0 for spent females in January. Testosterone which followed a similar pattern with %GSI in males increased remarkably in November. 17β-estradiol increased strictly in January. The strictly enhancement of the three estroid hormones in January in both male and female sexes could bedue totheir stimulating role in in spermatophre and egg lying in the mating season (In January). Most of the ovaries followed the asynchoronous growth pattern. Also the testes presented asynchoronous growth pattern in autumn.
Resumo:
The ribbon fishes ‘of the family Trichiuridac are represented as one of the most important food resources in Indian ocean. High density of the dominant species of ribbon fish (Trichiurus lepturus) in Oman sea and the 'Tillable catch in last yeas (more than 7000 tones per year) makes a trust area for studing their population biolog and stock assessment. As our knowledge on reproductive biology of this species has an important role on their fisheries management, as well as conservation of this stock from decline or over fishing, this research was held to determine some aspects of reproductive physiology of ribbon fish and the effects of environmental factors in gonadal cycle. The goals of the present thesis is to determine some aspects of reproductive physiology such as gonadosomatic index (GSI) , hepatosomatic index (HSI), condition factor (Ko, fecundity, sex ratio, size at first maturity, size at maturity (LM5O) and their relative hormonal & biochemical fluctuations. In this regards annual variation of sex hormones ic. estradiol 17-B, progestron, cortisol, testostrone and gonadotropins FSH (GTH-I) , LH (GTH-ll)I were measured ; gonadal histological studies were done by light & electron micrography. The research was carried out from April 1995 to January 19% in Ras Nleidani in the north part of Oman sea, and the environmental factors such as temperature, salinity, oxygen, rainfall and pH were measured. The effects of these parameters on reproductive cycle and hormonal fluctuationswere discussed by using correlation and principle component analysis (PCA). Female Ribbon fish reproductive strategy shows the same paterns of nonguarder marine teleosts. T. lepturus has more than one spawning season (existance of egges in different size in each month) and therfore it must have asynchronous ovaries and belong to continious spawners. GSI and HSI are good evidences for this type of reproductive patern. The testis of the lobular type , which is typical of most teleosts , is composed of numerous lobules which are separated from each other by a thin layer of fibrous connective tissue. GSI fluctuations revealed prolong- spawning time in males. There is significant increase in 17-13 estradiol. progestrone , cortisol and gonadotropins with maturity and prespawning period of female T lepturus. Plasma concentration of E2 and GTH II incresaed along with water temperature increasing (3300).. Spawning was observed from Nov. 1995 to Apr. 1996 in this species. Progestrone increased significantly with increasing rainfall in this season (P<0.01). Plasma cortisol levels increased with maturation and vitelpgenesis and also with the peak of spawning. From lenght-weight frequency and size distribution in each age groups and also minimum size at first maturity (52a cm) it would he concluded that T. lepturus must be matured at 2 years of age. Serum cholestrol and triglicerides significantly increased when maturation occured in this species. The relationship between alkaline phosphatase activity and hormonal fluctuations with maturity and vitelogenesis were discussed. Proximate compostion (muscle) shows significant variation with spawning period and maturity. Absolute individual fecundity (17420-159150) increased with body length and weight. Ultrastructural observations show dramatic variation in cell membrane (0ocyte membrane), yolk vesicles and, nucleolus dispersal in relation to maturity stages. fluctuations of gonadal hormones were discused in relation with vitelogenesis. Testosterone increased in males from Nov: to Mar. due to environmental impacts and spawning time. Sex ratio in different depth (10-40 m ,80-110 m) shows significnt differences in this ratio for two depths. In 10-40 m depth female shows dominant abundance to male in each months that may be due to their reproductive migration behaviour. The effects of temperature photoperiod and rainfall to maturity and spawning were discussed. According to -pawning period of T. leptunts in our sampling area it could be suggested that ribbon fish fi,theries must be restricted in the peak of spawning seasons (Feb. to Mar.) and in the spawning grounds (under 40 m depths). Other suggestions for population conservation have been mentioned.