5 resultados para Asymmetric and Private Information

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the light reflectance characteristics ofwaterhyacinth [Eichhornia crassipes (Mort.) Solms] and hydrilla [Hydrilla verticillata (L.F.) Royle] and the application of airborned videography with global positioning system (GPS) and geographic information system (GIS) technologies for distinguishing and mapping the distribution of these two aquatic weeds in waterways of southern Texas. Field reflectance measurements made at several locations showed that waterhyacinth generally had higher near-infrared (NIR) reflectance than associated plant species and water. Hydrilla had lower NIR reflectance than associated plant species and higher NIR reflectance than water. Reflectance measurements made on hydrilla plants submerged below the water surface had similar spectral characteristics to water. Waterhyacinth and hydrilla could be distinguished in color-infrared (CIR) video imagery where they had bright orange-red and reddish-brown image responses, respectively. Computer analysis of the imagery showed that waterhyacinth and hydrilla infestaions could be quantified. An accuracy assessment performed on the classified image showed an overall accuracy of 87.7%. Integration of the GPS with the video imagery permitted latitude/longitude coordinates of waterhyacinth and hydrilla infestation to be recorded on each image. A portion of the Rio Grande River in extreme southern Texas was flown with the video system to detect waterhyacinth and hydrilla infestaions. The GPS coordinates on the CIR video scenes depicting waterhyacinth and hydrilla infestations were entered into a GIS to map the distribution of these two noxious weeds in the Rio Grande River.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of various factors on spawn and fingerlings production in government and private farms was measured in this study. Primary data were collected from 45 private and 11 government farms from 9 selected districts covering major fish seed producing areas of Bangladesh. Results from Cobb-Douglas production function analysis indicated that the included variables had some positive impacts on returns from spawn and fingerlings. No input was found to be over used and increasing returns to scale was observed. Tabular analysis indicated that higher amount of input use produced higher level of yield, gross return and net return. The government farms were under utilized. For increased supply of fish seeds in the country more amount of specified inputs (feed and fertilizer) should be used for producing spawn and fingerlings especially in government farms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South Carolina Coastal Information Network (SCCIN) emerged as a result of a number of coastal outreach institutions working in partnership to enhance coordination of the coastal community outreach efforts in South Carolina. This organized effort, led by the S.C. Sea Grant Consortium and its Extension Program, includes partners from federal and state agencies, regional government agencies, and private organizations seeking to coordinate and/or jointly deliver outreach programs that target coastal community constituents. The Network was officially formed in 2006 with the original intention of fostering intra-and inter- agency communication, coordination, and cooperation. Network partners include the S.C. Sea Grant Consortium, S.C. Department of Health and Environmental Control – Office of Ocean and Coastal Resource Management and Bureau of Water, S.C. Department of Natural Resources – ACE Basin National Estuarine Research Reserve, North Inlet-Winyah Bay National Estuarine Research Reserve, Clemson University Cooperative Extension Service and Carolina Clear, Berkeley-Charleston-Dorchester Council of Governments, Waccamaw Regional Council of Governments, Urban Land Institute of South Carolina, S.C. Department of Archives and History, the National Oceanic and Atmospheric Administration – Coastal Services Center and Hollings Marine Laboratory, Michaux Conservancy, Ashley-Cooper Stormwater Education Consortium, the Coastal Waccamaw Stormwater Education Consortium, the S.C. Chapter of the U.S. Green Building Council, and the Lowcountry Council of Governments. (PDF contains 3 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land-based pollution is commonly identified as a major contributor to the observed deterioration of shallow-water coral reef ecosystem health. Human activity on the coastal landscape often induces nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination and other stressors that have degraded the quality of coastal waters. Coral reef ecosystems throughout Puerto Rico, including Jobos Bay, are under threat from coastal land uses such as urban development, industry and agriculture. The objectives of this report were two-fold: 1. To identify potentially harmful land use activities to the benthic habitats of Jobos Bay, and 2. To describe a monitoring plan for Jobos Bay designed to assess the impacts of conservation practices implemented on the watershed. This characterization is a component of the partnership between the U.S. Department of Agriculture (USDA) and the National Oceanic and Atmospheric Administration (NOAA) established by the Conservation Effects Assessment Project (CEAP) in Jobos Bay. CEAP is a multi-agency effort to quantify the environmental benefits of conservation practices used by private landowners participating in USDA programs. The Jobos Bay watershed, located in southeastern Puerto Rico, was selected as the first tropical CEAP Special Emphasis Watershed (SEW). Both USDA and NOAA use their respective expertise in terrestrial and marine environments to model and monitor Jobos Bay resources. This report documents NOAA activities conducted in the first year of the three-year CEAP effort in Jobos Bay. Chapter 1 provides a brief overview of the project and background information on Jobos Bay and its watershed. Chapter 2 implements NOAA’s Summit to Sea approach to summarize the existing resource conditions on the watershed and in the estuary. Summit to Sea uses a GIS-based procedure that links patterns of land use in coastal watersheds to sediment and pollutant loading predictions at the interface between terrestrial and marine environments. The outcome of Summit to Sea analysis is an inventory of coastal land use and predicted pollution threats, consisting of spatial data and descriptive statistics, which allows for better management of coral reef ecosystems. Chapters 3 and 4 describe the monitoring plan to assess the ecological response to conservation practices established by USDA on the watershed. Jobos Bay is the second largest estuary in Puerto Rico, but has more than three times the shoreline of any other estuarine area on the island. It is a natural harbor protected from offshore wind and waves by a series of mangrove islands and the Punta Pozuelo peninsula. The Jobos Bay marine ecosystem includes 48 km² of mangrove, seagrass, coral reef and other habitat types that span both intertidal and subtidal areas. Mapping of Jobos Bay revealed 10 different benthic habitats of varying prevalence, and a large area of unknown bottom type covering 38% of the entire bay. Of the known benthic habitats, submerged aquatic vegetation, primarily seagrass, is the most common bottom type, covering slightly less than 30% of the bay. Mangroves are the dominant shoreline feature, while coral reefs comprise only 4% of the total benthic habitat. However, coral reefs are some of the most productive habitats found in Jobos Bay, and provide important habitat and nursery grounds for fish and invertebrates of commercial and recreational value.