16 resultados para Association mapping
em Aquatic Commons
Resumo:
This Freely Associated States Shallow-water Coral Ecosystem Mapping Implementation Plan (FAS MIP) presents a framework for the development of shallow-water (~0–40 m; 0–22 fm) benthic habitat and possibly bathymetric maps of critical areas of the Freely Associated States (FAS). The FAS is made up of three self-governing groups of islands and atolls—the Republic of Palau (Palau), the Federated States of Micronesia (FSM), and the Republic of the Marshall Islands (RMI)—that are affiliated with the United States through Compacts of Free Association. This MIP was developed with extensive input from colleges, national and state regulatory and management agencies, federal agencies, non-governmental organizations, and individuals involved in or supporting the conservation and management of the FAS’s coral ecosystems. A list of organizations and individuals that provided input to the development of this MIP is provided in Appendix 1. This MIP has been developed to complement the Coral Reef Mapping Implementation Plan (2nd Draft) released in 1999 by the U.S. Coral Reef Task Force’s Mapping and Information Synthesis Working Group. That plan focused on mapping United States and FAS shallow-water (then defined as <30 m) coral reefs by 2009, based on available funding and geographic priorities, using primarily visual interpretation of aerial photography and satellite imagery. This MIP focuses on mapping the shallow-water (now defined as 0–40 m, rather than 0–30 m) coral ecosystems of the FAS using a suite of technologies and map development procedures. Both this FAS MIP and the 1999 Coral Reef Mapping Implementation Plan (2nd Draft) support to goals of the National Action Plan to Conserve Coral Reefs (U.S. Coral Reef Task Force, 2000). This FAS MIP presents a framework for mapping the coral ecosystems of the FAS and should be considered an evolving document. As priorities change, funding opportunities arise, new data are collected, and new technologies become available, the information presented herein will change.
Resumo:
In the present study, Indian fisheries growth rate and fish consumption have been analyzed through GIS mapping. The analyses were based on the state-level fisheries data of India collected from the secondary sources. Accordingly, the paper contains one thematic map containing two layers. To achieve this, all the data have been brought into a tabular form through Microsoft Excel and then joined to Map Info Professional Version 8.0 GIS software with digitized map of India for further analysis to generate thematic maps. In this thematic map, the first Jayer represents the growth-rate of fish production for the period 1990-2004 and the second layer represents fish consumption for the year 2003. The thematic map represented in graphic form presents inland, marine and total growth rates, and also the rural and urban fish consumption at the state levels. This study will be useful to fish traders, planners, researchers and administrators in fisheries policy formulation for sustainable development.
Resumo:
In recent times, GIS is being increasingly used as a decision support system for management of fisheries and aquaculture. It provides new innovative approaches of the dynamic relations that characterize this sector. In this context, a study is conducted based on the secondary data of a major maritime state, Maharashtra, where mapping of fisheries profile of coastal districts in the state is performed through GIS tool having critical geographic dimensions. This paper aims to map information of the state which can be used for the purpose of planning and decision making as each aspect of map has a different component involved. For this purpose, at the core of the system, the data were accessed and integrated from different sources mainly from the five coastal districts of Maharashtra state. Data were brought in tabular form through Microsoft Excel and then joined to Map info Professional version 8.0 GIS software was used with the digitized map of Maharashtra state to enable mapping. This was further synchronized and integrated to generate four thematic maps searchable on several criteria. Map 1 contains the searchable criteria as regards to the fish growth for the year 1997-2004 and fish seed production for the year 2003-04. Map 2 contains fisher population along with their occupation for the year 1992. Map 3 contains brackish water and shrimp farming production and culture area. Map 4 contains infrastructural facilities which include type of boats etc. With this mapping, planners and various stakeholders have accessible information as regards to the various components of fisheries in the state of Maharashtra.
Resumo:
This is a report to the California Department of Fish and Game. Between 2003 and 2008, the Foundation of CSUMB produced fish habitat maps and GIS layers for CDFG based on CDFG field data. This report describes the data entry, mapping, and website construction procedures associated with the project. Included are the maps that have been constructed. This report marks the completion of the Central Coast region South District Basin Planning and Habitat Mapping Project. (Document contains 40 pages)
Resumo:
Thousands of hectares of native plants and shallow open water habitat have been displaced in Lake Okeechobee’s marsh by the invasive exotic species torpedograss ( Panicum repens L.). The rate of torpedograss expansion, it’s areal distribution and the efficacy of herbicide treatments used to control torpedograss in the lake’s marsh were quantified using aerial color infra red (IR) photography.(PDF has 6 pages.)
Resumo:
Aboriginal peoples in Canada have been mapping aspects of their cultures for more than a generation. Indians, Inuit, Métis, non-status Indians and others have called their maps by different names at various times and places: land use and occupancy; land occupancy and use; traditional use; traditional land use and occupancy; current use; cultural sensitive areas; and so on. I use “land use and occupancy mapping” in a generic sense to include all the above. The term refers to the collection of interview data about traditional use of resources and occupancy of lands by First Nation persons, and the presentation of those data in map form. Think of it as the geography of oral tradition, or as the mapping of cultural and resource geography. (PDF contains 81 pages.)
Resumo:
Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Team developed digital benthic habitat maps for all MLCD and adjacent habitats. These maps were used to evaluate the efficacy of existing MLCDs for biodiversity conservation and fisheries replenishment, using a spatially explicit stratified random sampling design. Coupling the distribution of habitats and species habitat affinities using GIS technology elucidates species habitat utilization patterns at scales that are commensurate with ecosystem processes and is useful in defining essential fish habitat and biologically relevant boundaries for MPAs. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that the abundance and distribution of species and assemblages exhibited strong correlations with habitat types. Fish assemblages in the colonized and uncolonized hardbottom habitats were found to be most similar among all of the habitat types. Much of the macroalgae habitat sampled was macroalgae growing on hard substrate, and as a result showed similarities with the other hardbottom assemblages. The fish assemblages in the sand habitats were highly variable but distinct from the other habitat types. Management regime also played an important role in the abundance and distribution of fish assemblages. MLCDs had higher values for most fish assemblage characteristics (e.g. biomass, size, diversity) compared with adjacent fished areas and Fisheries Management Areas (FMAs) across all habitat types. In addition, apex predators and other targeted resources species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations. Habitat complexity, quality, size and level of protection from fishing were important determinates of MLCD effectiveness with respect to their associated fish assemblages. (PDF contains 217 pages)
Resumo:
The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a “spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment.” (PDF contains 31 pages)
Resumo:
South Carolina’s oyster reefs are a major component of the coastal landscape. Eastern oysters Crassostrea virginica are an important economic resource to the state and serve many essential functions in the environment, including water filtration, creek bank stabilization and habitat for other plants and animals. Effective conservation and management of oyster reefs is dependent on an understanding of their abundance, distribution, condition, and change over time. In South Carolina, over 95% of the state’s oyster habitat is intertidal. The current intertidal oyster reef database for South Carolina was developed by field assessment over several years. This database was completed in the early 1980s and is in need of an update to assess resource/habitat status and trends across the state. Anthropogenic factors such as coastal development and associated waterway usage (e.g., boat wakes) are suspected of significantly altering the extent and health of the state’s oyster resources. In 2002 the NOAA Coastal Services Center’s (Center) Coastal Remote Sensing Program (CRS) worked with the Marine Resources Division of the South Carolina Department of Natural Resources (SCDNR) to develop methods for mapping intertidal oyster reefs along the South Carolina coast using remote sensing technology. The objective of this project was to provide SCDNR with potential methodologies and approaches for assessing oyster resources in a more efficiently than could be accomplished through field digitizing. The project focused on the utility of high-resolution aerial imagery and on documenting the effectiveness of various analysis techniques for accomplishing the update. (PDF contains 32 pages)
Resumo:
This document, Guidance for Benthic Habitat Mapping: An Aerial Photographic Approach, describes proven technology that can be applied in an operational manner by state-level scientists and resource managers. This information is based on the experience gained by NOAA Coastal Services Center staff and state-level cooperators in the production of a series of benthic habitat data sets in Delaware, Florida, Maine, Massachusetts, New York, Rhode Island, the Virgin Islands, and Washington, as well as during Center-sponsored workshops on coral remote sensing and seagrass and aquatic habitat assessment. (PDF contains 39 pages) The original benthic habitat document, NOAA Coastal Change Analysis Program (C-CAP): Guidance for Regional Implementation (Dobson et al.), was published by the Department of Commerce in 1995. That document summarized procedures that were to be used by scientists throughout the United States to develop consistent and reliable coastal land cover and benthic habitat information. Advances in technology and new methodologies for generating these data created the need for this updated report, which builds upon the foundation of its predecessor.
Resumo:
This document represents a pilot effort to map social change in the coastal United States—a social atlas characterizing changing population, demographic, housing, and economic attributes. This pilot effort focuses on coastal North Carolina. The impetus for this project came from numerous discussions about the usefulness and need for a graphic representation of social change information for U.S. coastal regions. Although the information presented here will be of interest to a broad segment of the coastal community and general public, the intended target audience is coastal natural resource management professionals, Sea Grant Extension staff, urban and regional land-use planners, environmental educators, and other allied constituents interested in the social aspects of how the nation’s coasts are changing. This document has three sections. The first section provides background information about the project. The second section features descriptions of social indicators and depictions of social indicator data for 1970, 1980, 1990, and 2000, and changes from 1970 to 2000 for all North Carolina coastal counties. The third section contains three case studies describing changes in select social attributes for subsets of counties. (PDF contains 67 pages)
Resumo:
With elevating interest to establish conservation efforts for groundfish stocks and continued scrutiny over the value of marine protected areas along the west coast, the importance of enhancing our knowledge of seabed characteristics through mapping activities is becoming increasingly more important, especially in a timely manner. Shortly after the inception of the Seabed Mapping Initiative instituted with the US Geological Survey (USGS), the National Marine Sanctuary Program (NMSP) assembled a panel of habitat mapping experts. They determined that the status of existing data sets and future data acquisition needs varied widely among the individual sanctuaries and that more detailed site assessments were needed to better prioritize mapping efforts and outline an overall joint strategy. To assist with that specific effort and provide pertinent information for the Olympic Coast National Marine Sanctuary’s (OCNMS) Management Plan Review, this report summarizes the mapping efforts that have taken place at the site to date; calculates a timeframe for completion of baseline mapping efforts when operating under current data acquisition limitations; describes an optimized survey strategy to dramatically reduce the required time to complete baseline surveying; and provides estimates for the needed vessel sea-days (DAS) to accomplish baseline survey completion within a 2, 5 and 10 year timeframe. (PDF contains 38 pages.)
Resumo:
The Olympic Coast National Marine Sanctuary (OCNMS) continues to invest significant resources into seafloor mapping activities along Washington’s outer coast (Intelmann and Cochrane 2006; Intelmann et al. 2006; Intelmann 2006). Results from these annual mapping efforts offer a snapshot of current ground conditions, help to guide research and management activities, and provide a baseline for assessing the impacts of various threats to important habitat. During the months of August 2004 and May and July 2005, we used side scan sonar to image several regions of the sea floor in the northern OCNMS, and the data were mosaicked at 1-meter pixel resolution. Video from a towed camera sled, bathymetry data, sedimentary samples and side scan sonar mapping were integrated to describe geological and biological aspects of habitat. Polygon features were created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). For three small areas that were mapped with both side scan sonar and multibeam echosounder, we made a comparison of output from the classified images indicating little difference in results between the two methods. With these considerations, backscatter derived from multibeam bathymetry is currently a costefficient and safe method for seabed imaging in the shallow (<30 meters) rocky waters of OCNMS. The image quality is sufficient for classification purposes, the associated depths provide further descriptive value and risks to gear are minimized. In shallow waters (<30 meters) which do not have a high incidence of dangerous rock pinnacles, a towed multi-beam side scan sonar could provide a better option for obtaining seafloor imagery due to the high rate of acquisition speed and high image quality, however the high probability of losing or damaging such a costly system when deployed as a towed configuration in the extremely rugose nearshore zones within OCNMS is a financially risky proposition. The development of newer technologies such as intereferometric multibeam systems and bathymetric side scan systems could also provide great potential for mapping these nearshore rocky areas as they allow for high speed data acquisition, produce precisely geo-referenced side scan imagery to bathymetry, and do not experience the angular depth dependency associated with multibeam echosounders allowing larger range scales to be used in shallower water. As such, further investigation of these systems is needed to assess their efficiency and utility in these environments compared to traditional side scan sonar and multibeam bathymetry. (PDF contains 43 pages.)
Resumo:
In September 2002, side scan sonar was used to image a portion of the sea floor in the northern OCNMS and was mosaiced at 1-meter pixel resolution using 100 kHz data collected at 300-meter range scale. Video from a remotely-operated vehicle (ROV), bathymetry data, sedimentary samples, and sonar mapping have been integrated to describe geological and biological aspects of habitat and polygon features have been created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). The data can be used with geographic information system (GIS) software for display, query, and analysis. Textural analysis of the sonar images provided a relatively automated method for delineating substrate into three broad classes representing soft, mixed sediment, and hard bottom. Microhabitat and presence of certain biologic attributes were also populated into the polygon features, but strictly limited to areas where video groundtruthing occurred. Further groundtruthing work in specific areas would improve confidence in the classified habitat map. (PDF contains 22 pages.)
Resumo:
This report presents meristic data for nearly all of the known species of Sebasles. Rudimentary caudal ray counts tend to be higher in more active species. The number of caudal rays supported by the hypurals is consistently 14, whereas the number of branched caudal rays varies between 11 and 13. Vertebral counts and most fin-ray counts tend to be lower in species or populations in warmer latitudes, except for pectoral ray counts which tend to have an opposite geographic pattern. On the basis of the small magnitude of meristic and morphometric differences and the lack of other differences between northern and southern samples of "Sebasles caurinus," Sebaslichlhys vexillaris Jordan and Gilbert is regarded as a junior synonym of Sebasles caurinus Richardson. The patterns of bilateral variation in paired meristics are analyzed and their mechanism discussed. The frequency distribution of pectoral ray counts in their right-left combination is shown to be useful in species separation. No association was found between any combination of two meristic features in any species. The author proposes that intrasample associations between meristic features are evidence of sampling heterogeneity. (PDF file contains 21 pages.)