8 resultados para Arnold Schoenberg

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 17th Annual Sea Turtle Symposium was held at the Delta Orlando Resort in Orlando, Florida U.S.A. from March 4-8, 1997. The symposium was hosted by Florida Atlantic University, Mote Marine Laboratory, University of Central Florida, University of Florida, Florida Atlantic University and the Comité Nacional para la Conservación y Protección de las Totugas Marinas. The 17th was the largest symposium to date. A total of 720 participants registered, including sea turtle biologists, students, regulatory personnel, managers, and volunteers representing 38 countries. In addition to the United States, participants represented Australia, Austria, the Bahamas, Bonaire, Bermuda, Brazil, Canada, Colombia, Costa Rica, Croatia, Cuba, Cyprus, Dominican Republic, Ecuador, England, Guatemala, Greece, Honduras, India, Italy, Japan, Madagascar, Malaysia, Mexico, The Netherlands, Nicaragua, Peru, Philippines, Republic of Seychelles, Scotland, Spain, Sri Lanka, Switzerland, Taiwan, Turkey, Uruguay, and Venezuela. In addition to the 79 oral, 2 video, and 120 poster presentations, 3 workshops were offered: Selina Heppell (Duke University Marine Laboratory) provided “Population Modeling,” Mike Walsh and Sam Dover (Sea World-Orlando) conducted “Marine Turtle Veterinary Medicine” and “Conservation on Nesting Beaches” was offered by Blair Witherington and David Arnold (Florida Department of Environmental Protection). On the first evening, P.C.H. Pritchard delivered a thoughtful retrospect on Archie Carr that showed many sides of a complex man who studied and wrote about sea turtles. It was a presentation that none of us will forget. The members considered a number of resolutions at the Thursday business meeting and passed six. Five of these resolutions are presented in the Commentaries and Reviews section of Chelonian Conservation and Biology 2(3):442-444 (1997). The symposium was fortunate to have many fine presentations competing for the Archie Carr Best Student Presentations awards. The best oral presentation award went to Amanda Southwood (University of British Columbia) for “Heart rates and dive behavior of the leatherback sea turtle during the internesting interval.” The two runners-up were Richard Reina (Australian National University) for “Regulation of salt gland activity in Chelonia mydas” and Singo Minamikawa (Kyoto University) for “The influence that artificial specific gravity change gives to diving behavior of loggerhead turtles”. The winner of this year’s best poster competition was Mark Roberts (University of South Florida) for his poster entitled “Global population structure of green sea Turtles (Chelonia mydas) using microsatellite analysis of male mediated gene flow.” The two runners-up were Larisa Avens (University of North Carolina-Chapel Hill) for “Equilibrium responses to rotational displacements by hatchling sea turtles: maintaining a migratory heading in a turbulent ocean” and Annette Broderick (University of Glasgow) for “Female size, not length, is a correlate of reproductive output.” The symposium was very fortunate to receive a matching monetary and subscription gift from Anders J. G. Rhodin of the Chelonian Research Foundation. These enabled us to more adequately reward the fine work of students. The winners of the best paper and best poster awards received $400 plus a subscription to Chelonian Conservation and Biology. Each runner up received $100. The symposium owes a great debt to countless volunteers who helped make the meeting a success. Those volunteers include: Jamie Serino, Alan Bolton, and Karen Bjorndal, along with the UF students provided audio visual help, John Keinath chaired the student awards committee, Mike Salmon chaired the Program Commiteee, Sheryan Epperly and Joanne Braun compiled the Proceedings, Edwin Drane served as treasurer and provided much logistical help, Jane Provancha coordinated volunteers, Thelma Richardson conducted registration, Vicki Wiese coordinated food and beverage services, Jamie Serino and Erik Marin coordinated entertainment, Kenneth Dodd oversaw student travel awards, Traci Guynup, Tina Brown, Jerris Foote, Dan Hamilton, Richie Moretti, and Vicki Wiese served on the time and place committee, Blair Witherington created the trivia quiz, Tom McFarland donated the symposium logo, Deborah Crouse chaired the resolutions committee, Pamela Plotkin chaired the nominations committee, Sally Krebs, Susan Schenk, and Larry Wood conducted the silent auction, and Beverly and Tom McFarland coordinated all 26 vendors. Many individuals from outside the United States were able to attend the 17th Annual Sea Turtle Symposium thanks to the tireless work of Karen Eckert, Marydele Donnelly, and Jack Frazier in soliciting travel assistance for a number of international participants. We are indebted to those donating money to the internationals’ housing fund (Flo Vetter Memorial Fund, Marinelife Center of Juno Beach, Roger Mellgren, and Jane Provancha). We raise much of our money for international travel from the auction; thanks go to auctioneer Bob Shoop, who kept our auction fastpaced and entertaining, and made sure the bidding was high. The Annual Sea Turtle Symposium is unequaled in its emphasis on international participation. Through international participation we all learn a great deal more about the biology of sea turtles and the conservation issues that sea turtles face in distant waters. Additionally, those attending the symposium come away with a tremendous wealth of knowledge, professional contacts, and new friendships. The Annual Sea Turtle Symposium is a meeting in which pretenses are dropped, good science is presented, and friendly, open communication is the rule. The camaraderie that typifies these meetings ultimately translates into understanding and cooperation. These aspects, combined, have gone and will go a long way toward helping to protect marine turtles and toward aiding their recovery on a global scale. (PDF contains 342 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coastal Pacific Ocean off northern and central California encompasses the strongest seasonal upwelling zone in the California Current ecosystem. Headlands and bays here generate complex circulation features and confer unusual oceanographic complexity. We sampled the coastal epipelagic fish community of this region with a surface trawl in the summer and fall of 2000–05 to assess patterns of spatial and temporal community structure. Fifty-three species of fish were captured in 218 hauls at 34 fixed stations, with clupeiform species dominating. To examine spatial patterns, samples were grouped by location relative to a prominent headland at Point Reyes and the resulting two regions, north coast and Gulf of the Farallones, were plotted by using nonmetric multidimensional scaling. Seasonal and interannual patterns were also examined, and representative species were identified for each distinct community. Seven oceanographic variables measured concurrently with trawling were plotted by principal components analysis and tested for correlation with biotic patterns. We found significant differences in community structure by region, year, and season, but no interaction among main effects. Significant differences in oceanographic conditions mirrored the biotic patterns, and a match between biotic and hydrographic structure was detected. Dissimilarity between assemblages was mostly the result of differences in abundance and frequency of occurrence of about twelve common species. Community patterns were best described by a subset of hydrographic variables, including water depth, distance from shore, and any one of several correlated variables associated with upwelling intensity. Rather than discrete communities with clear borders and distinct member species, we found gradients in community structure and identified stations with similar fish communities by region and by proximity to features such as the San Francisco Bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bay scallop, Argopecten irradians, supported a small commercial fishery in Florida from the late 1920’s through the 1940’s; peak landings were in 1946 (214,366 lbs of meats), but it currently supports one of the most popular and family-oriented fisheries along the west coast of Florida. The primary habitat of the short-lived (18 months) bay scallop is seagrass beds. Peak spawning occurs in the fall. Human population growth and coastal development that caused habitat changes and reduced water quality probably are the main causes of a large decline in the scallop’s abundance. Bay scallop restoration efforts in bays where they have become scarce have centered on releasing pediveligers and juveniles into grass beds and holding scallops in cages where they would

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England and Long Island, N.Y., made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has given consumers a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Tabasco leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certified beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has provided consumers with a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Campeche leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certifi ed beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 1784 legal-size (≥356 mm TL) hatchery-produced red drum (Sciaenops ocellatus) were tagged and released to estimate tag-reporting levels of recreational anglers in South Carolina (SC) and Georgia (GA). Twelve groups of legal-size fish (~150 fish/group) were released. Half of the fish of each group were tagged with an external tag with the message “reward” and the other half of the fish were implanted with tags with the message “$100 reward.” These fish were released into two estuaries in each state (n=4); three replicate groups were released at different sites within each estuary (n=12). From results obtained in previous tag return experiments conducted by wildlife and fisheries biologists, it was hypothesized that reporting would be maximized at a reward level of $100/tag. Reporting level for the “reward” tags was estimated by dividing the number of “reward” tags returned by the number of “$100 reward” tags returned. The cumulative return level for both tag messages was 22.7 (±1.9)% in SC and 25.8 (±4.1)% in GA. These return levels were typical of those recorded by other red drum tagging programs in the region. Return data were partitioned according to verbal survey information obtained from anglers who reported tagged fish. Based on this partitioned data set, 14.3 (±2.1)% of “reward” tags were returned in SC, and 25.5 (±2.3)% of “$100 reward” tags were returned. This finding indicates that only 56.7% of the fish captured with “reward” tags were reported in SC. The pattern was similar for GA where 19.1 (±10.6)% of “reward” message tags were returned as compared with 30.1 (±15.6)% for “$100 reward” message tags. This difference yielded a reporting level of 63% for “reward” tags in GA. Currently, 50% is used as the estimate for the angler reporting level in population models for red drum and a number of other coastal finfish species in the South Atlantic region of the United States. Based on results of our study, the commonly used reporting estimate may result in an overestimate of angler exploitation for red drum.