4 resultados para Argos
em Aquatic Commons
Resumo:
Almost 120 days at sea aboard three NOAA research vessels and one fishing vessel over the past three years have supported biogeographic characterization of Tortugas Ecological Reserve (TER). This work initiated measurement of post-implementation effects of TER as a refuge for exploited species. In Tortugas South, seafloor transect surveys were conducted using divers, towed operated vehicles (TOV), remotely operated vehicles (ROV), various sonar platforms, and the Deepworker manned submersible. ARGOS drifter releases, satellite imagery, ichthyoplankton surveys, sea surface temperature, and diver census were combined to elucidate potential dispersal of fish spawning in this environment. Surveys are being compiled into a GIS to allow resource managers to gauge benthic resource status and distribution. Drifter studies have determined that within the ~ 30 days of larval life stage for fishes spawning at Tortugas South, larvae could reach as far downstream as Tampa Bay on the west Florida coast and Cape Canaveral on the east coast. Together with actual fish surveys and water mass delineation, this work demonstrates that the refuge status of this area endows it with tremendous downstream spillover and larval export potential for Florida reef habitats and promotes the maintenance of their fish communities. In Tortugas North, 30 randomly selected, permanent stations were established. Five stations were assigned to each of the following six areas: within Dry Tortugas National Park, falling north of the prevailing currents (Park North); within Dry Tortugas National Park, falling south of the prevailing currents (Park South); within the Ecological Reserve falling north of the prevailing currents (Reserve North); within the Ecological Reserve falling south of the prevailing currents (Reserve South); within areas immediately adjacent to these two strata, falling north of the prevailing currents (Out North); and within areas immediately adjacent to these two strata, falling south of the prevailing currents (Out South). Intensive characterization of these sites was conducted using multiple sonar techniques, TOV, ROV, diver-based digital video collection, diver-based fish census, towed fish capture, sediment particle-size, benthic chlorophyll analyses, and stable isotope analyses of primary producers, fish, and, shellfish. In order to complement and extend information from studies focused on the coral reef, we have targeted the ecotone between the reef and adjacent, non-reef habitats as these areas are well-known in ecology for indicating changes in trophic relationships at the ecosystem scale. Such trophic changes are hypothesized to occur as top-down control of the system grows with protection of piscivorous fishes. Preliminary isotope data, in conjunction with our prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be the source of a significant amount of the primary production ultimately fueling fish production throughout TER and downstream throughout the range of larval fish dispersal. Therefore, the status and influence of the previously neglected, non-reef habitat within the refuge (comprising ~70% of TER) appears to be intimately tied to the health of the coral reef community proper. These data, collected in a biogeographic context, employing an integrated Before-After Control Impact design at multiple spatial scales, leave us poised to document and quantify the postimplementation effects of TER. Combined with the work at Tortugas South, this project represents a multi-disciplinary effort of sometimes disparate disciplines (fishery oceanography, benthic ecology, food web analysis, remote sensing/geography/landscape ecology, and resource management) and approaches (physical, biological, ecological). We expect the continuation of this effort to yield critical information for the management of TER and the evaluation of protected areas as a refuge for exploited species. (PDF contains 32 pages.)
Resumo:
The atlanto-scandian herring consists of two major stocks, i.e. the Icelandic summer spawner and the Norwegian spring spawner. Both stocks have recovered well after complete collapse in the seventies and allow for a controlled fishery. The total allowable catch of the Norwegian spring spawner is currently 1.3 mill. t. The resumption of the fishery is accompanied by an annual and multi-national survey with Norwegian, Faeroe Islands, Icelandic and Russian contribution. In 1998 the EU will contribute to the survey with the Swedish vessel ”Argos” and in 1999 with the ”Walther Herwig III” under Dutch, Swedish and German participation. About half of the survey costs are covered by the EU by means of a funded study, the other half is contributed by the participating nations.
Resumo:
Short-duration (5- or 10-day) deployments of pop-up satellite archival tags were used to estimate survival of white marlin (Tetrapturus albidus) released from the western North Atlantic recreational fishery. Forty-one tags, each recording temperature, pressure, and light level readings approximately every two minutes for 5-day tags (n= 5) or four minutes for 10-day tags (n= 36), were attached to white marlin caught with dead baits rigged on straight-shank (“J”) hooks (n =21) or circle hooks (n=20) in offshore waters of the U.S. Mid-Atlantic region, the Dominican Republic, Mexico, and Venezuela. Forty tags (97.8%) transmitted data to the satellites of the Argos system, and 33 tags (82.5%) transmitted data consistent with survival of tagged animals over the deployment duration. Approximately 61% (range: 19−95%) of all archived data were successfully recovered from each tag. Survival was significantly (P<0.01) higher for white marlin caught on circle hooks (100%) than for those caught on straight-shank (“J”) hooks (65%). Time-to-death ranged from 10 minutes to 64 hours following release for the seven documented mortalities, and five animals died within the first six hours after release. These results indicate that a simple change in hook type can significantly increase the survival of white marlin released from recreational fis
Resumo:
Over the past few years, pop-up satellite archival tags (PSATs) have been used to investigate the behavior, movements, thermal biology, and postrelease mortality of a wide range of large, highly migratory species including bluefin tuna (Block et al., 2001), swordfish (Sedberry and Loefer, 2001), blue marlin (Graves et al., 2002), striped marlin (Domeier and Dewar, 2003), and white sharks (Boustany et al., 2002). PSAT tag technology has improved rapidly, and current tag models are capable of collecting, processing, and storing large amounts of information on light level, temperature, and pressure (depth) for a predetermined length of time before the release of these tags from animals. After release, the tags float to the surface, and transmit the stored data to passing satellites of the Argos system.