9 resultados para Arabic literature--History and criticism--Early works to 1800
em Aquatic Commons
Resumo:
The life history and population dynamics of the finetooth shark (Carcharhinus isodon) in the north-eastern Gulf of Mexico were studied by determining age, growth, size-at-maturity, natural mortality, productivity, and elasticity of vital rates of the population. The von Bertalanffy growth model was estimated as Lt=1559 mm TL (1–e–0.24 (t+2.07)) for females and Lt = 1337 mm TL (1–e–0.41 (t+1.39)) for males. For comparison, the Fabens growth equation was also fitted separately to observed size-at-age data, and the fits to the data were found to be similar. The oldest aged specimens were 8.0 and 8.1 yr, and theoretical longevity estimates were 14.4 and 8.5 yr for females and males, respectively. Median length at maturity was 1187 and 1230 mm TL, equivalent to 3.9 and 4.3 yr for males and females, respectively. Two scenarios, based on the results of the two equations used to describe growth, were considered for population modeling and the results were similar. Annual rates of survivorship estimated through five methods ranged from 0.850/yr to 0.607/yr for scenario 1 and from 0.840/yr to 0.590/yr for scenario 2. Productivities were 0.041/yr for scenario 1 and 0.038/yr for scenario 2 when the population level that produces maximum sustain-able yield is assumed to occur at an instantaneous total mortality rate (Z) equaling 1.5 M, and were 0.071/yr and 0.067/yr, when Z=2 M for scenario 1 and 2, respectively. Mean generation time was 6.96 yr and 6.34 yr for scenarios 1 and 2, respectively. Elasticities calculated through simulation of Leslie matrices averaged 12.6% (12.1% for scenario 2) for fertility, 47.7% (46.2% for scenario 2) for juvenile survival, and 39.7% (41.6% for scenario 2) for adult survival. In all, the finetooth shark exhibits life-history and population characteristics intermediate to those of sharks in the small coastal complex and those from some large coastal species, such as the blacktip shark (Carcharhinus limbatus).
Resumo:
English: For nearly a century, fisheries scientists have studied marine fish stocks in an effort to understand how the abundances of fish populations are determined. During the early lives of marine fishes, survival is variable, and the numbers of individuals surviving to transitional stages or recruitment are difficult to predict. The egg, larval, and juvenile stages of marine fishes are characterized by high rates of mortality and growth. Most marine fishes, particularly pelagic species, are highly fecund, produce small eggs and larvae, and feed and grow in complex aquatic ecosystems. The identification of environmental or biological factors that are most important in controlling survival during the early life stages of marine fishes is a potentially powerful tool in stock assessment. Because vital rates (mortality and growth) during the early life stages of marine fishes are high and variable, small changes in those rates can have profound effects on the properties of survivors and recruitment potential (Houde 1989). Understanding and predicting the factors that most strongly influence pre-recruit survival are key goals of fisheries research programs. Spanish: Desde hace casi un siglo, los científicos pesqueros han estudiado las poblaciones de peces marinos en un intento por entender cómo se determina la abundancia de las mismas. Durante la vida temprana de los peces marinos, la supervivencia es variable, y el número de individuos que sobrevive hasta las etapas transicionales o el reclutamiento es difícil de predecir. Las etapas de huevo, larval, y juvenil de los peces marinos son caracterizadas por tasas altas de mortalidad y crecimiento. La mayoría de los peces marinos, particularmente las especies pelágicas, son muy fecundos, producen huevos y larvas pequeños, y se alimentan y crecen en ecosistemas acuáticos complejos. La identificación los factores ambientales o biológicos más importantes en el control de la supervivencia durante las etapas tempranas de vida de los peces marinos es una herramienta potencialmente potente en la evaluación de las poblaciones. Ya que las tasas vitales (mortalidad y crecimiento) durante las etapas tempranas de vida de los peces marinos son altas y variables, cambios pequeños en esas tasas pueden ejercer efectos importantes sobre las propiedades de los supervivientes y el potencial de reclutamiento (Houde 1989). Comprender y predecir los factores que más afectan la supervivencia antes del reclutamiento son objetivos clave de los programas de investigación pesquera.
Resumo:
Historically, America's use and enjoyment of the oyster extend far back into prehistoric times. The Native Americans often utilized oysters, more intensively in some areas than in others, and, at least in some areas of the Caribbean and Pacific coast, the invading Spanish sought oysters as eagerly as they did gold-but for the pearls. That was the pearl oyster, Pinctada sp., and signs of its local overexploitation were recorded early in the 16th century. During the 1800's, use of the eastern oyster grew phenomenally and, for a time, it outranked beef as a source of protein in some parts of the nation. Social events grew up around it, as it became an important aspect of culture and myth. Eventually, research on the oyster began to blossom, and scientific literature on the various species likewise bloomed-to the extent that when the late Paul Galtsoff wrote his classic treatise "The American oyster Crassostrea virginica Gmelin" in 1954, he reported compiling an extensive bibliography of over 6,000 subject and author cards on oysters and related subjects which he deposited in the library of the Woods Hole Laboratory of the Bureau of Commercial Fisheries (now NMFS). That large report, volume 64 (480 pages) of the agency's Fishery Bulletin, was a bargain at $2.75, and it has been a standard reference ever since. But the research and the attendant literature have grown greatly since Galtsoff's work was published, and now that has been thoroughly updated.
Resumo:
ENGLISH: The egg of the anchoveta, Cetengraulis mysticetus (Günther), was identified in the Gulf of Panama by its size, difference in diurnal period of spawning, seasonal occurrence (October to January) and relative abundance. It is pelagic, translucent and oval with mean dimensions of 1.166 mm. and 0.558 mm. for the long and short axes respectively. The egg membrane is unsculptured, the yolk mass is markedly segmented, and no oil globule or pigmentation is present. It was not found in the plankton from mid-January 1957 until the latter part of the following September; during this period the gonads of the anchoveta were immature. Only one other anchovy egg, spawned during the same diurnal period, is sufficiently similar in dimensions to be confused with that of the anchoveta; however, it is slightly smaller. SPANISH: El huevo de la anchoveta, Cetengraulis mysticetus (Günther), fué identificado en el Golfo de Panamá por su tamaño, diferencias en el período diario de desove, su abundancia en la temporada (de octubre a enero) y por su abundancia relativa. El huevo es pelágico, translúcido, oval y con dimensiones promedio de 1.166 mm. y 0.558 mm. para los ejes largo y corto, respectivamente. La membrana es lisa, el vitelo está francamente segmentado y no posee ningún glóbulo graso o pigmentación. El huevo de la anchoveta no se encontró en el plancton en el período comprendido entre mediados de enero y fines de septiembre de 1957; durante este lapso las gónadas estuvieron inactivas.
Resumo:
Much of fish consumed by the poor are caught by household members and traded in local markets. These fish are rarely or poorly included in national statistics, and it is therefore difficult to estimate precisely the real contribution of fish to the rural poor households. This report is the first global overview of the role played by fish in improving nutrition. Fish consumption patterns of the poor, the nutritional value of fish, and small-scale fisheries and aquaculture activities are considered. It also highlights the gap in knowledge where more research is needed.
Resumo:
In the history of whaling from prehistoric to modern times, the large whales, sometimes called the “great whales,” were hunted most heavily owing in part to their corresponding value in oil, meat, and baleen. Regional populations of North Atlantic right whales, Eubalaena glacialis glacialis, were already decimated by 1700, and the North Atlantic gray whale, Eschrichtius robustus, was hunted to extinction by the early 1700’s (Mitchell and Mead1).
Resumo:
The genesis and the early history of the Woods Hole Laboratory (WHL), to a lesser extent the Marine Biological Laboratory (MBL), and to some degree the Woods Hole Oceanographic Institution (WHOI), were elegantly covered by Paul S. Galtsoff (1962) in his BCF Circular "The Story of the Bureau of Commercial Fisheries Biological Laboratory, Woods Hole, Massachusetts." It covers the period from the beginning in 1871 to 1958. Galtsoffs more than 35-year career in the fishery service was spent almost entirely in Woods Hole. I will only briefly touch on that portion of the Laboratory's history covered by Galtsoff. Woods Hole, as a center of marine science, was conceived and implemented largely by one man, Spencer Fullerton Baird, at that time Assistant Secretary of the Smithsonian and who was also instrumental in the establishment of the National Museum and Permanent Secretary of the newly established American Association for the Advancement of Science. He was appointed by President Ulysses S. Grant in 1871 as the first U.S. Commissioner of Fisheries. Fisheries research began here as early as 1871, but a permanent station did not exist until 1885.
Resumo:
Understanding the phase and timing of ontogenetic habitat shifts underlies the study of a species’ life history and population dynamics. This information is especially critical to the conservation and management of threatened and endangered species, such as the loggerhead sea turtle Caretta caretta. The early life of loggerheads consists of a terrestrial egg and hatchling stage, a posthatchling and juvenile oceanic, pelagic feeding stage, and a juvenile neritic, primarily benthic feeding stage. In the present study, novel approaches were applied to explore the timing of the loggerhead ontogenetic shift from pelagic to benthic habitats. The most recent years of somatic growth are recorded as annual marks in humerus cross sections. A consistent growth mark pattern in benthic juvenile loggerheads was identified, with narrow growth marks in the interior of the bone transitioning to wider growth marks at the exterior, indicative of a sharp increase in growth rates at the transitional growth mark. This increase in annual growth is hypothesized to correlate with the ontogenetic shift from pelagic to benthic habitats. Stable isotopes of carbon and nitrogen just interior and exterior to the transitional growth mark, as well as stable isotopes from pelagic and benthic flora, fauna and loggerhead stomach contents, were analyzed to determine whether this transition related to a diet shift. The results clearly indicate that a dietary shift from oceanic/pelagic to neritic/benthic feeding corresponds to a transitional growth mark. The combination of stable isotope analysis with skeletochronology can elucidate the ecology of cryptic life history stages during loggerhead ontogeny.