62 resultados para Aquaculture system,
em Aquatic Commons
Resumo:
This report presents the findings from a thorough literature review, workshops, and group and individual interviews conducted by STREAM in the Philippines in November and December 2003. The ambitious scope of the report combined with the limited time frame and funding available to compile it necessitated the extensive use of secondary data, including both published and unpublished material written by staff of the agencies / organisations involved, with very limited editing of material used. All possible efforts were made to generate information in participation with the government institutions responsible for managing the fisheries, and all contributors (as well as many other stakeholders) were provided with multiple opportunities to comment on the report content. The contributors are listed on the front page of the report. (Pdf contains 56 pages).
Resumo:
Many sources of information that discuss currents problems of food security point to the importance of farmed fish as an ideal food source that can be grown by poor farmers, (Asian Development Bank 2004). Furthermore, the development of improved strains of fish suitable for low-input aquaculture such as Tilapia, has demonstrated the feasibility of an approach that combines “cutting edge science” with accessible technology, as a means for improving the nutrition and livelihoods of both the urban poor and poor farmers in developing countries (Mair et al. 2002). However, the use of improved strains of fish as a means of reducing hunger and improving livelihoods has proved to be difficult to sustain, especially as a public good, when external (development) funding sources devoted to this area are minimal1. In addition, the more complicated problem of delivery of an aquaculture system, not just improved fish strains and the technology, can present difficulties and may go explicitly unrecognized (from Sissel Rogne, as cited by Silje Rem 2002). Thus, the involvement of private partners has featured prominently in the strategy for transferring to the public technology related to improved Tilapia strains. Partnering with the private sector in delivery schemes to the poor should take into account both the public goods aspect and the requirement that the traits selected for breeding “improved” strains meet the actual needs of the resource poor farmer. Other dissemination approaches involving the public sector may require a large investment in capacity building. However, the use of public sector institutions as delivery agents encourages the maintaining of the “public good” nature of the products.
Resumo:
The maintenance of adequate dissolved oxygen level is very important in the economy of any aquaculture system. An easy to construct aerating device was created using 0.5 hp water-pump, shower rose, Styrofoam, and rubber hose. The aerator works by drawing water from below and discharging it into the atmosphere as a spray. The spray is aerated as it splashes into the water surface. The aerating device has an average spray of 1.2 unit and doubles the dissolved oxygen content of 37.8 m super(3) tank in one hour
Resumo:
In a survey conducted to find out the status of integrated rice-cum-fish culture in Niger State, Nigeria, 0.37 ha of Fadama wetlands was utilized for rice-cum-fish culture and at experimental stage. In the case study of this rice-cum-fish model, the Nile Tilapia (Oreochromis niloticus) was involved. The result was that 1,4720 kg/ha/yr could be produced using chick manure application under rice-cum-fish culture model. The available records reveal that 233,079 ha out of 495,000 ha of estimated Fadama in Niger State was used for rice cultivation in 1997. If 233,079 ha were to be used for integrated rice-cum fish culture, it is estimated that 343,092 mt of fish (Oreochromis niloticus) could be produced per year. The fish demand in Niger State in 2002 was 50,000 mt. The NPK application under rice-cum-fish production gave the best rice production estimated at 43,968.0 kg/ha/yr. The percentage increase in rice yield as well as increase in net income due to introduction of fish was 10.1 % and 54.4% respectively. The culture system is therefore recommended for adoption towards greater participation in aquaculture development by the farmers
Resumo:
BFRI evolved some selected aquaculture technologies viz. polyculture of carps in perennial ponds, monoculture of short cycled fish species (BFRI super strain) in seasonal ponds and prawn seed production through backyard hatchery system have been demonstrated under Farming System Research (FSR) component in Jessore and Santahar regions. Both polyculture of carps and monoculture of short cycled fish species technologies were tested in farmer's ponds in Kaium Kula village near Jessore town. In polyculture trials, seven species comprising of silver carp (Hypophthalmichthys molirrix), catla (Catla catla), rohu (Labeo rohita), grass carp (Ctenopharyngodon idellus), common carp (Cyprinus carpio), mrigal (Cirrhinus cirrhosus) and silver barb (Barbonymus gonionotus) were stocked @ 9,500 (ratio 6:2:4:2:1:5:5); 10,750 (ratio 6:2:4:2:1:5:5) and 12,000 (ratio 6:2:4:2:1:5:4) fish/ha respectively in ponds of T1, T2 and T3 having three replications of each. The mean highest fish production was 3,148 kg/ha in T3, followed by 2,899 kg/ha in T1 and 2,875 kg/ha in T2. Production of T3 was significantly different (P<0.05) than both T1 and T2, while there was no significant differences (P>0.05) between the production of T1 and T2. In case of trial of short cycled fish species, two treatments were tested: T1 (comprising of BFRI super strain of Nile tilapia, silver carp, common carp and silver barb; ratio 3:5:1:1) and T2 (having only BFRI super strain of Nile tilapia). Stocking density in both the treatments were same (20,000 fish/ha). In this trial average production was higher in T1 (2,743 kg/ha) than that of T2 (2,369 kg/ha) but the production figure in these two treatments was not significantly different (P>0.05). Demonstration of backyard prawn hatchery technology was tested at Santahar region of Bogra district, North-west part of Bangladesh. This hatchery consisted of three main components i) bio-filter, ii) rearing tank unit (chari) and iii) air blower/air pump unit. Plastic drum of 200-250 l capacity and cemented chari of 200-250 l capacity were used as bio-filter and larval rearing containers respectively. A 0.5 hp air blower with 6 aquarium air pump were used to operate the aeration system in the hatchery. Diluted sea water (10-12 ppt) made from brine solution (200-250 ppt) collected from salt-bed was used in the backyard hatchery system of hatching of eggs and rearing of larvae. Rearing of first stage zoea-larvae was reared in three rearing tanks following the stocking densities of 40, 50 and 60/l of water respectively. Production of post-larvae were 20±0.82, 22±1.12 and 28±1.63/liter of water in treatments I, II and III respectively in 38, 40 and 39 days rearing period.
Resumo:
*Table of Contents* Sustainable aquaculture Peter Edwards writes on rural aquaculture: Small-scale pond culture in Bangladesh. People in aquaculture Community based aquaculture - issues and challenges H.K. De and G.S. Saha. Aquaculture as an action programme: An exercise in building confidence and self worth. B. Shanthi, V.S. Chandrasekaran, M. Kailasam, M. Muralidar, T. Ravisankar,.C. Saradad and M. Krishnan The STREAM Column: Transforming policy recommendations into pro-poor service provision Graham Haylor. Research & farming techniques. Grow out of juvenile spotted Babylon to marketable size in earthen ponds II: Polyculture with seabass. S. Kritsanapuntu, N. Chaitanawisuti, W. Santhaweesuk and Y. Natsukari Asia-Pacific Marine Finfish Aquaculture Network. Influence of economic conditions of importing nations and unforeseen global events on grouper markets. Sih Yang Sim. Present status of hatchery technology for cobia in Vietnam. Nhu Van Can. Report on grouper hatchery training course in Indonesia. Nguyen Quoc Thai. Aquatic animal health. Biosecured and improved penaeid shrimp production through organic nursery raceway system in India. Felix. S. and M. Samaya Kannan. Management of monogenean parasites in brackishwater finfish. K.P. Jithendran, M. Natarajan and I.S. Azad. Vembanad Lake: A potential spawner bank of the giant freshwater prawn Macrobrachium rosenbergii on the southwest coast of India. Paramaraj Balamurugan, Pitchaimuthu Mariappan & Chellam Balasundaram.
Resumo:
*Table of Contents* Sustainable Aquaculture Peter Edwards writes on rural aquaculture: Peri-urban aquaculture in Kolkata A case of informal shrimp farmers association and its role in sustainable shrimp farming in Tamil Nadu, India M. Kumaran, N. Kalaimani, K. Ponnusamy, V.S. Chandrasekaran, D. Deboral Vimala Diffusion and adoption of shrimp farming technologies M. Kumaran, K. Ponnusamy and N. Kalaimani Farmers as Scientists: Aquaculture education in India - opportunities for global partnership M.C. Nandeesha Information system of fish germplasm resources in China Yang Ningsheng, Ge Chanshui, Ouyang Haiying, Yuan Yongming Status and development needs of freshwater crustacean aquaculture in China Xu Pao Research and Farming Techniques Aquaculture fundamentals: Getting the most out of your feed Part II: The role of macronutrients Simon Wilkinson Fish breeding in captivity - some innovative adaptations of technology by Bengal farmers N.R. Chattopadhyay Scientific guidelines for farmers engaged in freshwater prawn farming in India Vishal Saxena Marine Finfish Section News and publications Status and development of mariculture in Indonesia Ketut Sugama Aquatic Animal Health Use of probiotics in larval rearing of new candidate species Rehana Abidi Advice on aquatic animal health care: Problems in shrimp culture during the wet season (Thai/English languages) Pornlerd Chanratchakool
Resumo:
(51 p.)
Resumo:
The overall goal of this study was to develop a new fishery resource product through open-water aquaculture for the west coast of Florida that would compete as a non-traditional product through market development. Specific objectives were as follows: I. To grow a minimum of 50, 000 juvenile scallops to a minimum market size of40 mm in a cage and float system in the off-shore waters of Crystal River, Florida. 2. To determine the growth rate, survival, and time to market size for the individuals in this system and area to other similar projects like Virginia. 3. To introduce local fishermen and the aquaculture students at Crystal River High School to the hatchery, nursery, and grow-out techniques. 4. To determine the economic and financial characteristics of bay scallop culture in Florida and assess the sensitivity of projected costs and earnings to changes in key technical, managerial, and market related parameters. 5. To determine the market acceptability and necessary marketing strategy for whole bay scallop product in Florida. (PDF has 99 pages.)
Resumo:
There is an increasing demand for fish in the world due to a growing population, better economic situation in some sectors, and greater awareness of health issues in relation to food. Since capture fisheries have stagnated, fish farming has become a very fast growing food production system. In this presentation, the author gives an overview of the technologies that are available for genetic improvement of fish, and briefly discuss their merit in the context of a sustainable development. He also discusses the essential prerequisites for effective dissemination of improved stock to farmers. It is concluded that genetic improvement programs based on selective breeding can substantially contribute to sustainable fish production systems. Furthermore, if such genetic improvement programs are followed up with effective dissemination strategies, they can result in a positive impact on farmers' incomes.
Resumo:
The visit highlighted the vital contribution of the inland fisheries sector to provision of basic food security within the uncleared area (farmers report very low consumption frequencies for all other fish or meat protein substitutes). A 30-mile system of Brackish water lagoons which demarcates the cleared and uncleared areas is the main source of retailed fish in the uncleared area. Second in importance is the inland tank fishery, where the bulk of production emanates from 17 major irrigation reservoirs. [PDF contains 29 pages]
Resumo:
Aquaculture depends largely upon a good aquatic environment. The quality of the aquatic medium determines success to a large extent in aquaculture. The medium is particularly vulnerable to excessive abstraction (i.e surface or groundwater) and contamination from a range of sources (industrial, agricultural or domestic) as well as risks of self-pollution. Environmental management options proffered so far include: improvements in farming performance (especially related to feed and feeding strategies, stocking densities, water quality management, disease prevention and control, use of chemicals, etc.) and in the selection of sites and culturable species, treatment of effluents, sensitivity of recipient waters and enforcement of environmental regulations and guidelines specific to the culture system. There are presently conceptual frameworks for aquatic environment management backed by legal administrative tools to create or enforce rational system for water management, fisheries and aquaculture development strengthened by adaptive institutionalisation
Resumo:
Integrated agriculture-cum-fish farming has been practised profitably for ages in the Chinese small-scale farming system. There is a great potential for this system by utilizing the vast Nigerian flood plains (approx. 515,000 ha). Dogongari Bay in Lake Kainji Basin was identified as a suitable site for this system after some extensive fish culture trials. Polyculture of Clarias spp., Heterotis niloticus and Tilapia was proposed for integration with layers in the poultry house, 2-ha upland rain-fed rice farming and indirect cattle rearing in the 5-ha enclosure site. Cost benefit analysis showed that the system will consistently record profit as from the second year of operation. Various complex factors were identified to affect profitability of this mixed farming system. Concerted research approach is needed to fully understand the interrelationships of the various components of this integrated system. Generous funding of research activities is very crucial in this situation
Resumo:
Details are given of a study carried out in Nigeria, to introduce the practice of fish-cum-rice culture, using Sarotherodon galilaeus. Two plots each measuring 360m super(2) were used for this study and were compared with the farmer's two plots measuring 300m super(2) and 350m super(2). The plots were modified and had two central canals. Rice seedlings were transplanted into the plots after 19 days using a planting distance of 20 x 20cm. Three rice seedlings were planted per hole, using rice variety FARO 40, and grown for 90 days. About 240 and 180 S. galilaeus fingerlings of mean weight of 30g and 26g were stocked in the two experimental plots, respectively. They were fed with pelleted feed of 25% C.P. and monitored for 100 days. A yield of 22.8kg was obtained in plot A while 15.66kg was obtained in plot B. A rice yield of 250kg (i.e 5 bags) was obtained in each of the plots. The results obtained were compared with plots with no fish