3 resultados para Aorte--Calcification
em Aquatic Commons
Resumo:
As the atmospheric levels of CO2 rise from human activity, the carbonic acid levels of the ocean increase, causing ocean acidification. This increase in acidity breaks down the calcified bodies that many marine organisms depend upon. Upwelling regions such as Monterey Bay in California have pH levels that are not expected to reach the open ocean for a few decades. This study reviews one of the common intertidal animals of the California coast, the Owl Limpet Lottia gigantea, and its genetic variation of the plasma membrane Ca2+ ATPase (PMCA) in relation to the acidity of its environment. The PMCA protein functions in the calcification process of many organisms. Specifically in limpets, this gene functions to form its protective shell. Single-nucleotide polymorphisms (SNPs) were found among five sections of the gene to determine variation between the acidic environment population in Monterey, California and the non-acidic environment population in Santa Barbara, California. While some variation was determined, the Monterey Bay and Santa Barbara Lottia gigantea populations are not significantly distinct at the PMCA gene. Sections B, C, and D were found to be linked. Only one location in Section B was found to have an amino acid change within an exon. Section A has the strongest connection to the sampling location. Monterey individuals were seen to be more genetically recognizable, while Santa Barbara individuals showed slightly more variation. Understanding the trends of ocean acidification, upwelling region activities, and population genetics will assist in determining how the ocean environment will behave in the future.
Resumo:
Commercial catches taken in southwestern Australian waters by trawl fisheries targeting prawns and scallops and from gillnet and longline fisheries targeting sharks were sampled at different times of the year between 2002 and 2008. This sampling yielded 33 elasmobranch species representing 17 families. Multivariate statistics elucidated the ways in which the species compositions of elasmobranchs differed among fishing methods and provided benchmark data for detecting changes in the elasmobranch fauna in the future. Virtually all elasmobranchs caught by trawling, which consisted predominantly of rays, were discarded as bycatch, as were approximately a quarter of the elasmobranchs caught by both gillnetting and longlining. The maximum lengths and the lengths at maturity of four abundant bycatch species, Heterodontus portusjacksoni, Aptychotrema vincentiana, Squatina australis, and Myliobatis australis, were greater for females than males. The L50 determined for the males of these species at maturity by using full clasper calcification as the criterion of maturity did not differ significantly from the corresponding L50 derived by using gonadal data as the criterion for maturity. The proportions of the individuals of these species with lengths less than those at which 50% reach maturity were far greater in trawl samples than in gillnet and longline samples. This result was due to differences in gear selectivity and to trawling being undertaken in shallow inshore waters that act as nursery areas for these species. Sound quantitative data on the species compositions of elasmobranchs caught by commercial fisheries and the biological characteristics of the main elasmobranch bycatch species are crucial for developing strategies for conserving these important species and thus the marine ecosystems of which they are part.
Resumo:
Reproductive organs from 393 male and 382 female porbeagles (Lamna nasus), caught in the western North Atlantic Ocean, were examined to determine size at maturity and reproductive cycle. Males ranged in size from 86 to 246 cm fork length (FL) and females ranged from 94 to 288 cm FL. Maturity in males was best described by an inflection in the relationship of clasper length to fork length when combined with clasper calcification. Males matured between 162 and 185 cm FL and 50% were mature at 174 cm FL. In females, all reproductive organ measurements related to body length showed a strong inflection around the size of maturity. Females matured between 210 and 230 cm FL and 50% were mature at 218 cm FL. After a protracted fall mating period (September–November), females give birth to an average of 4.0 young in spring (April−June). As in other lamnids, young are nourished through oophagy. Evidence from this study indicated a one-year reproductive cycle and gestation period lasting 8–9 months.