30 resultados para Animal genetics
em Aquatic Commons
Resumo:
The three areas in Rookery Bay, near Marco Island and Fakahatchee Bay were sampled from July 1971 through July 1972, and 1,006,640 individual animals were collected, of which the majority (55%) came from the Marco area. The large disparity between the catches at Marco and the remaining study areas was due mainly to the appearance of high numbers of species of polychaetes and echinoderms that were of very minor importance or absent from the catches in Rookery Bay and Fakahatchee Bay. When only the major classes of animals in the catch are considered (i.e., crustaceans, fish and mollusks) the total counts for Fakahatchee (298,830) and Marco (275,075) are quite comparable but both exceed Rookery Bay (119,388) by a considerable margin. The effects of the red tide outbreak in the summer of 1971 were apparently restricted to the Rookery Bay Sanctuary and may account for some of the observed differences. For the purposes of making controlled comparisons between the study areas, three common habitats were selected in each area so that a mud bottom habitat, a sand-shell bottom habitat and a vegetated bottom habitat were located in each of the study areas. Total catches by habitat types for crustaceans, fish and mollusks and certain of the more abundant species show clearly the overwhelming importance of the vegetated bottom as a habitat for animals. By habitat the vegetated areas had the most "indicator species" with five, the mud habitat was next with three and the sand-shell habitat third with two. Thus the vegetated habitat would be the best choice if a single habitat were to be used to detect environmental changes between study areas. (PDF contains 137 pages)
Resumo:
This manual presents geographic information by state of occurrence, and descriptions of the socio-economic impact created by the invasion of non-indigenous and native transplanted animal species in the Laurentian Great Lakes and the coastal waters of the United States. It is not a comprehensive literature review, but rather is intended as a primer for those unfamiliar with the socio-economic impacts of invasive aquatic and marine animals. Readers should also note that the information contained in this manual is current as of its publication date. New information and new species are routinely being added to the wider literature base. Most of the information was gathered from a number of web sites maintained by government agencies, commissions, academic institutions and museums. Additional information was taken from the primary and secondary literature. This manual focuses on socio-economic consequences of invasive species. Thus, ecological impacts, when noted in the literature, are not discussed unless a connection to socio-economic factors can be made. For a majority of the species listed, either the impact of their invasion is not understood, or it is not published in sources surveyed. In the species summaries, sources of information are cited except for information from the U.S. Geological Survey’s (USGS) Nonindigenous Aquatic Species Database http://nas.er.usgs.gov. This website formed the base information used in creating tables on geographic distribution, and in many of the species summaries provided. Thus, whenever information is given without specific author/source and date citation, it has come from this comprehensive source. (PDF contains 90 pages)
Resumo:
An early establishment of selective breeding programs on Atlantic salmon has been crucial for the success of developing efficient and sustainable salmon farming in Norway. A national selective breeding program was initiated by AKVAFORSK at the beginning of the 1970s, by collecting fertilized eggs from more than 40 Norwegian river populations. Several private selective breeding programs were also initiated in the 1970s and 1980s. While these private programs were initiated using individual selection (i.e. massselection) to genetically improve growth, the national program was designed to gradually include all economically important traits in the breeding objective (i.e. growth, age at sexual maturation, disease resistance and quality traits) using a combined family and within-family selection strategy. Independent of which selection strategy and program design used, it is important to secure and maintain a broad genetic variation in the breeding populations to maximize selection response. It has been documented that genetically improved salmon from the national selective breeding program grow twice as fast as wild Atlantic salmon and require 25 per cent less feed, while salmon representing the private breeding programs all show an intermediate growth performance. As a result of efficient dissemination of genetically improved Atlantic salmon, the Norwegian salmon farming industry has reduced its feed costs by more than US$ 230 million per year! The national selective breeding program on Atlantic salmon was commercialized into a breeding company (AquaGen) in 1992. Five years later, several private companies and the AKVAFORSK Genetics Center (AFGC) established a second breeding company (SalmoBreed) using breeding candidates from one of the private breeding programs. These two breeding companies have similar products, but different strategies on how to organize the breeding program and to disseminate the genetically improved seed to the Norwegian salmon industry. Greater competition has increased the necessity to document the genetic gain obtained from the different programs and to market the economic benefits of farming the genetically improved breeds. Both breeding companies have organized their dissemination to get a sufficient share of the economic benefits in order to sustain and improve their breeding programs.
Resumo:
In this study we (1) synthesized 65 yr of odontocete stranding data around the main Hawaiian Islands (1937–2002); (2) analyzed stranding patterns and trends over time; and (3) compared occurrence patterns based on sightings of live animals with stranding data and evaluated the compatibility of these data sets. From 1937 to 2002, 202 odontocete strandings were recorded by the National Marine Fisheries Service, Pacific Islands Regional Office. Strandings increased through time due to increased reporting effort and occurred throughout the year. The four most common of 16 species reported were Kogia spp. (18%), spinner dolphins (Stenella longirostris) (15%), striped dolphins (Stenella coeruleoalba) (11%), and sperm whales (Physeter macrocephalus) (10%). The highest proportion of strandings was recorded on O‘ahu (48%), followed by Maui/La¯na‘i (24%), Kaua‘i (12%), Hawai‘i (11%), and Moloka‘i (5%). Comparison with four previously published live animal survey studies suggests that stranding records are a good indicator of species composition and yield reasonable data on the frequency of occurrence of species in the region they cover.
Resumo:
The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communication and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 88 pages.)
Resumo:
The estimated potential of Nigerian fish resources is 1,830,994 tonnes(t) whereas the demand based on per capita consumption of 12.0kg and a population of 88.5 million is 1.085 million tonnes. Supply is presently less than 500,000 tons. The gap between demand and supply have to be met through improved utilization and increased availability of fish and fishery products. The role of fish in nutrition is recognized, since it supplies a good balance of protein, vitamins and minerals and a relatively low caloric content. This paper appraises the consumption and utilisation pattern of fish in Nigeria, the spoilage of fish and prevention of losses as a means of increasing the availability of fish for human consumption and consequent control of aggravated animal protein deficiency - induced malnutrition. The paper further highlights the point that without increased landings, increased supply of fish can be achieved through reduction of postharvest loss of what is presently caught. The use of newly designed smoke - drying equipment to achieve such goal is highlighted. The paper also emphasises the need to put into human food chain those non-conventional fishery resources and by-catch of shrimp and demersal trawl fishes by conversion into high value protein products like fish cakes, fish pies and salted dried cakes
Resumo:
Sustainable aquaculture GLOBALG.A.P. standard in Thai shrimp farms: Mission (im)possible? p.4 Leepaisomboon, T., Chuchird, N., Limsuwan, C., Steenbruggen, E.R., and Mungkung, R. The Victorian trout industry & the bushfires p.6 Mosig, J. Small-scale aquaculture in the Ayeyarwady Delta, Myanmar p.10 Edwards, P. The history, status, and future prospects of monosex tilapia culture in Thailand p.18 Belton, B., Turongruang, D., Bhujel, R. and Little, D.C. Mangroves of Nakhon Si Thammarat Province in southern Thailand: Species diversity, community structure and current status p.20 By Amarasinghe, M.D., Dulyapurk, V., Taparhudee, W., Yoonpundh, R. and Jumnongsong, S. Research and farming techniques Induced breeding of pacu (Piaractus brachypomus) in captivity with pituitary extract p.23 Chattarjee, N.R. and Mazumdar, B. Aquatic animal health Fumonisins - mycotoxins of increasing importance in fish! p. 24 Griessler, K. and Encarnação, P. Genetics and biodiversity Microsatellite DNA markers, a fisheries perspective. Part 1: The nature of microsatellites p.27 Sekar, M., Suresh, E., Kumar, N.S., Nayak, S.K., Balakrishna, C. Asia-Pacific Marine Finfi sh Aquaculture Magazine Formulated feed for tiger grouper grow-out p.30 Rachmansyah, Usman, Palinggi, N.N. and Williams, K. NACA Newsletter 36
Resumo:
Sustainable aquaculture Peter Edwards writes on rural aquaculture Edwards, P. Mussel farming initiatives in North Kerala, India: A case of successful adoption of technology leading to rural livelihood transformation Laxmilatha, P., Thomas, S., Asokan, P.K., Surendranathan, V.G., Sivadasan, M.P., and Ramachandran, N.P. Selective study on the availability in indigenous fish species having ornamental value in some districts of West Bengal Panigrahi, A.K., Dutta, S. and Ghosh, I. Aquaculture livelihoods service centres in Aceh, Indonesia: A novel approach to improving the livelihoods of small scale fish farmers Ravikumar, B. and Yamamoto, K. Research and farming techniques e-Sagu Aqua - an innovative information and communication technology model for transfer of technology for aquaculture Vimala, D. D., Ravisankar, T., Mahalakshmi, P., and Kumaran, M. Freshwater pearl crop: an emerging enterprise in the Indian subcontinent Misra, G., Jena, J. and Kumar, K. Genetics and biodiversity Preliminary risk assessment of Pacific white leg shrimp (P. vannamei) introduced to Thailand for aquaculture Senanan, W., Panutrakul, S., Barnette, P., Chavanich, S., Mantachitr, V., Tangkrock-Olan, N., and Viyakarn, V. Farmer profile Aquatic animal health Asian fish health experts visit Australia Olsen, L. and Ingram, B. (Fisheries Victoria) Black gill disease of cage-cultured ornate rock lobster Panulirus ornatus in central Vietnam caused by Fusarium species Nha, V.V., Hoa, D.T. and Khoa, L.V. Marine Finfish Aquaculture Network Effects of the partial substitution fish oil by soybean oil in the diets on muscle fatty acid composition of juvenile cobia (Rachycentron canadum) Hung, P.D. and Mao, N.D. Growth response of cobia Rachycentron canadum (Pisces: Rachycentridae) under the hypersaline conditions of the Emirate of Abu Dhabi Yousif, O.M.*, Kumar, K.K. and Abdul-Rahman, A.F.A. NACA Newsletter
Resumo:
This paper conducts an exposition on the field identification of Clariid catfishes Heterobranchus, Clarias and their hybrid as an important tool in fish breeding and genetics. The paper explained the classification and aquacultural importance of Clariid catfishes. Parameters necessary for fish identification were highlighted. The identification of Heterobranchus, Clarias, their hybrid and sexual differences were also identified. The paper is of the position that the identification of Heterobranchus, Clarias and their hybrid is important in their genetic conservation and in achieving success in breeding and genetic studies
Resumo:
Dosidicus gigas is a large pelagic cephalopod of the eastern Pacific that has recently undergone an unexpected, significant range expansion up the coast of North America. The impact that such a range expansion is expected to have on local fisheries and marine ecosystems has motivated a thorough study of this top predator, a squid whose lifestyle has been quite mysterious until recently. Unfortunately, Dosidicus spends daylight hours at depths prohibitive to making observations without significant artificial interference. Observations of this squid‟s natural behaviors have thus far been considerably limited by the bright illumination and loud noises of remotely-operated-vehicles, or else the presence of humans from boats or with SCUBA. However, recent technological innovations have allowed for observations to take place in the absence of humans, or significant human intrusion, through the use of animal-borne devices such as National Geographic‟s CRITTERCAM. Utilizing the advanced video recording and data logging technology of this device, this study seeks to characterize unknown components of Dosidicus gigas behavior at depth. Data from two successful CRITTERCAM deployments reveal an assortment of new observations concerning Dosidicus lifestyle. Tri-axial accelerometers enable a confident description of Dosidicus orientation during ascents, descents, and depth maintenance behavior - previously not possible with simple depth tags. Video documentation of intraspecific interactions between Dosidicus permits the identification of ten chromatic components, a previously undescribed basal chromatic behavior, and multiple distinct body postures. And finally, based on visualizations of spermatophore release by D. gigas and repetitive behavior patterns between squid pairs, this thesis proposes the existence of a new mating behavior in Dosidicus. This study intends to provide the first glimpse into the natural behavior of Dosidicus, establishing the groundwork for a comprehensive ethogram to be supported with data from future CRITTERCAM deployments. Cataloguing these behaviors will be useful in accounting for Dosidicus‟ current range expansion in the northeast Pacific, as well as to inform public interest in the impacts this expansion will have on local fisheries and marine ecosystems.
Resumo:
Aquaculture in Africa is fairly insignificant by world standards and accounts for a mere 0.4 per cent of global aquaculture production. The application of genetics can play an important role in efforts to increase aquaculture production in Africa through methods such as selective breeding, hybridization, chromosome manipulation and use of YY “supermales”. Other issues that need to be addressed are limited genetic research facilities, funding, human capacity and suitable species for aquaculture.
Resumo:
The information presented here is extracted from the presentations and discussions at the Sixth Steering Committee Meeting of the International Network on Genetics in Aquaculture (INGA) held in Hanoi, Vietnam on 8-10 May 2001. The main topics discussed were: review of genetics research progress and planned activities in member countries and Associate Member institutions; genetics improvement technologies; strategies and action plans for distribution of improved fish breeds to small-scale farmers; ecological risk assessment for genetically improved fish breeds; methods for monitoring the uptake of improved strains and impact assessment; and network activities and collaborations.
Resumo:
In this paper we present livestock breeding developments that could be taken into consideration in the genetic improvement of farmed aquaculture species, especially in freshwater fish. Firstly, the current breeding objective in aquatic species has focused almost exclusively on the improvement of body weight at harvest or on growth related traits. This is unlikely to be sufficient to meet the future needs of the aquaculture industry. To meet future demands breeding programs will most likely have to include additional traits, such as fitness related ones (survival, disease resistance), feed efficiency, or flesh quality, rather than only growth performance. In order to select for a multi-trait breeding objective, genetic variation in traits of interest and the genetic relationships among them need to be estimated. In addition, economic values for these traits will be required. Generally, there is a paucity of data on variable and fixed production costs in aquaculture, and this could be a major constraint in the further expansion of the breeding objectives. Secondly, genetic evaluation systems using the restricted maximum likelihood method (REML) and best linear unbiased prediction (BLUP) in a framework of mixed model methodology could be widely adopted to replace the more commonly used method of mass selection based on phenotypic performance. The BLUP method increases the accuracy of selection and also allows the management of inbreeding and estimation of genetic trends. BLUP is an improvement over the classic selection index approach, which was used in the success story of the genetically improved farmed tilapia (GIFT) in the Philippines, with genetic gains from 10 to 20 per cent per generation of selection. In parallel with BLUP, optimal genetic contribution theory can be applied to maximize genetic gain while constraining inbreeding in the long run in selection programs. Thirdly, by using advanced statistical methods, genetic selection can be carried out not only at the nucleus level but also in lower tiers of the pyramid breeding structure. Large scale across population genetic evaluation through genetic connectedness using cryopreserved sperm enables the comparison and ranking of genetic merit of all animals across populations, countries or years, and thus the genetically superior brood stock can be identified and widely used and exchanged to increase the rate of genetic progress in the population as a whole. It is concluded that sound genetic programs need to be established for aquaculture species. In addition to being very effective, fully pedigreed breeding programs would also enable the exploration of possibilities of integrating molecular markers (e.g., genetic tagging using DNA fingerprinting, marker (gene) assisted selection) and reproductive technologies such as in-vitro fertilization using cryopreserved spermatozoa.
Resumo:
Three diets were formulated using locally available feed ingredients in Malawi to test the effect of replacing animal protein (fish meal, meat and bone meal) with soybean meal (10:0, 5:5, 0:10% of diet) as the protein source on growth and feed conversion of Oreochromis karongae. There were no significant differences in growth rate (GR), specific growth rate (SGR) and feed conversion ratios (FCR) among the three diets. It can be concluded that more expensive and limited animal protein sources can totally be replaced by cheaper soybean in order to get similar growth rates in O. karongae.