9 resultados para Angell, James Burrill, 1829-1916
em Aquatic Commons
Resumo:
Without knowledge of basic seafloor characteristics, the ability to address any number of critical marine and/or coastal management issues is diminished. For example, management and conservation of essential fish habitat (EFH), a requirement mandated by federally guided fishery management plans (FMPs), requires among other things a description of habitats for federally managed species. Although the list of attributes important to habitat are numerous, the ability to efficiently and effectively describe many, and especially at the scales required, does not exist with the tools currently available. However, several characteristics of seafloor morphology are readily obtainable at multiple scales and can serve as useful descriptors of habitat. Recent advancements in acoustic technology, such as multibeam echosounding (MBES), can provide remote indication of surficial sediment properties such as texture, hardness, or roughness, and further permit highly detailed renderings of seafloor morphology. With acoustic-based surveys providing a relatively efficient method for data acquisition, there exists a need for efficient and reproducible automated segmentation routines to process the data. Using MBES data collected by the Olympic Coast National Marine Sanctuary (OCNMS), and through a contracted seafloor survey, we expanded on the techniques of Cutter et al. (2003) to describe an objective repeatable process that uses parameterized local Fourier histogram (LFH) texture features to automate segmentation of surficial sediments from acoustic imagery using a maximum likelihood decision rule. Sonar signatures and classification performance were evaluated using video imagery obtained from a towed camera sled. Segmented raster images were converted to polygon features and attributed using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999) for use in a geographical information system (GIS). (PDF contains 41 pages.)
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Oceanographic, hydrologic, and climatic data collected during 1916-'87 in Puget Sound's Main Basin (~200 m x 5 km x 100 km) and approaches oscillate at low frequency between two regimes (I, II). The oscillation accounts for a large fraction of the interannual variability (41-75%) and the zero crossings between regimes span approximately a decade. ... The transition between regimes is accompanied by substantial changes in the horizontal pressure and density fields between the Pacific coast and the mixing zones leading to the Basin, as well as within the Basin itself.
Resumo:
Western Atlantic synodontid species were studied as part of an ongoing effort to reanalyze Caribbean shorefish diversity. A neighbor-joining tree constructed from cytochrome c oxidase I (COI) data revealed 2 highly divergent genetic lineages within both Synodus intermedius (Agassiz, 1829) (Sand Diver) and S. foetens (Linnaeus, 1766) (Inshore Lizardfish). A new species, Synodus macrostigmus, is described for one of the S. intermedius lineages. Synodus macrostigmus and S. intermedius differ in number of lateral-line scales, caudal pigmentation, size of the scapular blotch, and shape of the anterior-nostril flap. Synodus macrostigmus and S. intermedius have overlapping geographic and depth distributions, but S. macrostigmus generally inhabits deeper water (>28 m) than does S. intermedius and is known only from coastal waters of the southeastern United States and the Gulf of Mexico, in contrast to those areas and the Caribbean for S. intermedius. Synodus bondi Fowler, 1939, is resurrected from the synonymy of S. foetens for one of the S. foetens genetic lineages. The 2 species differ in length and shape of the snout, number of anal-fin rays, and shape of the anterior-nostril flap. Synodus bondi and S. foetens co-occur in the central Caribbean, but S. bondi otherwise has a more southerly distribution than does S. foetens. Redescriptions are provided for S. intermedius, S. foetens, and S. bondi. Neotypes are designated for S. intermedius and S. foetens. A revised key to Synodus species in the western Atlantic is presented.
Resumo:
Demographic parameters were derived from sectioned otoliths of John’s Snapper (Lutjanus johnii) from 4 regions across 9° of latitude and 23° of longitude in northern Australia. Latitudinal variation in size and growth rates of this species greatly exceeded longitudinal variation. Populations of John’s Snapper farthest from the equator had the largest body sizes, in line with James’s rule, and the fastest growth rates, contrary to the temperature-size rule for ectotherms. A maximum age of 28.6 years, nearly 3 times previous estimates, was recorded and the largest individual was 990 mm in fork length. Females grew to a larger mean asymptotic fork length (L∞) than did males, a finding consistent with functional gonochorism. Otolith weight at age and gonad weight at length followed the same latitudinal trends seen in length at age. Length at maturity was ~72–87% of L∞ and varied by ~23% across the full latitudinal gradient, but age at first maturity was consistently in the range of 6–10 years, indicating that basic growth trajectories were similar across vastly different environments. We discuss both the need for complementary reproductive data in age-based studies and the insights gained from experiments where the concept of oxygen- and capacity-limited thermal tolerance is applied to explain the mechanistic causes of James’s rule in tropical fish species.
Resumo:
Population parameters of Lepturacanthus savala from the trawl catches in the north-eastern part of the Bay of Bengal, Bangladesh were investigated based on length frequency data, using complete ELEFAN computer program. The asymptotic length (Lα) and growth constant (K) were estimated to be 106.50 cm (total length) and 0.80/year respectively. Based on these growth parameters, the total mortality (Z) was estimated to be 1.89. The estimated values for natural mortality (M) and fishing mortality (F) were 1.08 and 0.81 respectively. The estimated value for the exploitation rate (E) using the length converted catch curve was 0.43. The recruitment pattern showed two peaks per year. The estimated sizes of L. savala at 25, 50 and 75% probabilities of capture were 57.49, 60.39 and 63.28 cm respectively. The estimated length weight relationship for combined sex was W=0.00093 TL(super)2.97
Resumo:
Lepturacanthus savala (Cuvier, 1829) constitutes a minor fishery contributing 23.3% to the total ribbonfish catch in Maharashtra. Based on the length data obtained from shrimp trawlers and the traditionally operated bag nets, age and growth of the species have been investigated from Mumbai waters. Growth was studied by various computer-based methods incorporated in FiSAT Programme. The growth parameters L∞ and K (on annual basis) by Gulland-Holt plot were 683.3 mm and 0.87, respectively. As the seasonal temperature variations in coastal waters of Mumbai are not pronounced, the seasonally oscillating growth patterns by ELEFAN and Appledoorn's method were not considered. Following the von Bertalanffy growth model, the fish attains 399.8, 567.2 and 637.4 mm at the end of 1, 2 and 3 years, respectively, and the lifespan of the fish is about 3.3 years.
Resumo:
Age, growth and reproduction of H. kelee were studied, and a brief description of its fishery in Maputo Bay (Mozambique) is given. Most material was collected from gill net fisheries during 1977-1980, but some was taken from shrimp trawlers operating in the same area during 1980-1981. Main spawning takes place during October-January with a peak in December. There is also some evidence that spawning takes place during June-July. The size at first maturity was approximately equals 14-15 cm. Ageing was carried out using primary growth rings in the otoliths and length-frequency analysis of fish caught by shrimp trawlers. Von Bertalanffy's growth equation parameters were determined. Males and females grew in similar fashion. There are seasonal trends in the catch composition of the gill net fishery, showing high values during April to September and low during October to December.