10 resultados para Andrews
em Aquatic Commons
Resumo:
H.J. Andrews Experimental Forest is a 6400 ha forest of Douglas fir, western hemlock, and Pacific silver fir located in, and typical of, the central portion of the western slope of the Cascade mountain range of Oregon. The forest is one of 19 sites in the Long-Term Ecological Research (LTER) program sponsored by the National Science Foundation. ... Because of the scientific significance of Andrews Forest, it is important to investigate the temporal variability of annual and seasonal temperature and precipitation values at the site and identify past times of anomalous climatic conditions. It is also important to establish quantitatively the relationships between the climate of Andrews Forest and that of its surrounding area and, hence, place the climate of Andrews Forest into its regional context.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Potential (clear-sky) radiation receipt is modeled for the slopes of the H.J. Andrews Experimental Forest Long-Term Ecological Research site in the foothills of the southern Cascade mountains of central Oregon. The modeling method developed by Williams is selected and applied to the forest area for the times of the solstices and equinox as well as mid-month times in January, February, April, and May in order to completely characterize the seasonal change of potential radiation at the location. ... It seems that Lookout Creek approximately divides the Andrews Forest into an area of relatively high potential radiation to the north of the creek and relatively lower potential radiation values to the south of the creek. Potential radiation values seem to be associated with the Andrews GIS data layers of debris flows and predominant tree species zones.
Resumo:
The mapping and geospatial analysis of benthic environments are multidisciplinary tasks that have become more accessible in recent years because of advances in technology and cost reductions in survey systems. The complex relationships that exist among physical, biological, and chemical seafloor components require advanced, integrated analysis techniques to enable scientists and others to visualize patterns and, in so doing, allow inferences to be made about benthic processes. Effective mapping, analysis, and visualization of marine habitats are particularly important because the subtidal seafloor environment is not readily viewed directly by eye. Research in benthic environments relies heavily, therefore, on remote sensing techniques to collect effective data. Because many benthic scientists are not mapping professionals, they may not adequately consider the links between data collection, data analysis, and data visualization. Projects often start with clear goals, but may be hampered by the technical details and skills required for maintaining data quality through the entire process from collection through analysis and presentation. The lack of technical understanding of the entire data handling process can represent a significant impediment to success. While many benthic mapping efforts have detailed their methodology as it relates to the overall scientific goals of a project, only a few published papers and reports focus on the analysis and visualization components (Paton et al. 1997, Weihe et al. 1999, Basu and Saxena 1999, Bruce et al. 1997). In particular, the benthic mapping literature often briefly describes data collection and analysis methods, but fails to provide sufficiently detailed explanation of particular analysis techniques or display methodologies so that others can employ them. In general, such techniques are in large part guided by the data acquisition methods, which can include both aerial and water-based remote sensing methods to map the seafloor without physical disturbance, as well as physical sampling methodologies (e.g., grab or core sampling). The terms benthic mapping and benthic habitat mapping are often used synonymously to describe seafloor mapping conducted for the purpose of benthic habitat identification. There is a subtle yet important difference, however, between general benthic mapping and benthic habitat mapping. The distinction is important because it dictates the sequential analysis and visualization techniques that are employed following data collection. In this paper general seafloor mapping for identification of regional geologic features and morphology is defined as benthic mapping. Benthic habitat mapping incorporates the regional scale geologic information but also includes higher resolution surveys and analysis of biological communities to identify the biological habitats. In addition, this paper adopts the definition of habitats established by Kostylev et al. (2001) as a spatially defined area where the physical, chemical, and biological environment is distinctly different from the surrounding environment. (PDF contains 31 pages)
Resumo:
Gillnet mesh selectivity parameters were estimated for juvenile blacktip sharks (Carcharhinus limbatus) by using length data from an experimental fishery-independent gillnet survey in the northeastern Gulf of Mexico. Length data for 1720 blacktip sharks were collected over 17 years (19942010) with seven mesh sizes ranging from 7.6 to 20.3 cm. Four selectivity models, a normal model assuming fixed spread, a normal model assuming that spread is proportional to mesh size, a lognormal model, and a gamma model were fitted to the data by using the SELECT (share each lengths catch total) method. Each model was run twice under separate assumptions of 1) equal fishing intensity; and 2) fishing intensity proportional to mesh size. The normal, fixed-spread selectivity curve where fishing intensity is assumed to be proportional to mesh size provided the best fit to the data according to model deviance estimates and was chosen as the best model. Results indicate that juvenile blacktip sharks are susceptible as bycatch in some commercial gillnet fisheries.
Resumo:
Two sympatric populations of transient (mammal-eating) killer whales were photo-identified over 27 years (19842010) in Prince William Sound and Kenai Fjords, coastal waters of the northern Gulf of Alaska (GOA). A total of 88 individuals were identified during 203 encounters with AT1 transients (22 individuals) and 91 encounters with GOA transients (66 individuals). The median number of individuals identified annually was similar for both populations (AT1=7; GOA=8), but mark-recapture estimates showed the AT1 whales to have much higher fidelity to the study area, whereas the GOA whales had a higher exchange of individuals. Apparent survival estimates were generally high for both populations, but there was a significant reduction in the survival of AT1 transients after the Exxon Valdez oil spill in 1989, with an abrupt decline in estimated abundance from a high of 22 in 1989 to a low of seven whales at the end of 2010. There was no detectable decline in GOA population abundance or survival over the same period, but abundance ranged from just 6 to 18 whales annually. Resighting data from adjacent coastal waters and movement tracks from satellite tags further indicated that the GOA whales are part of a larger population with a more extensive range, whereas AT1 whales are resident to the study area.
Resumo:
The sandbar shark (Carcharhinus plumbeus) was the cornerstone species of western North Atlantic and Gulf of Mexico large coastal shark fisheries until 2008 when they were allocated to a research-only fishery. Despite decades of fishing on this species, important life history parameters, such as age and growth, have not been well known. Some validated age and growth information exists for sandbar shark, but more comprehensive life history information is needed. The complementary application of bomb radiocarbon and tag-recapture dating was used in this study to determine valid age-estimation criteria and longevity estimates for this species. These two methods indicated that current age interpretations based on counts of growth bands in vertebrae are accurate to 10 or 12 years. Beyond these years, we could not determine with certainty when such an underestimation of age begins; however, bomb radiocarbon and tag-recapture data indicated that large adult sharks were considerably older than the estimates derived from counts of growth bands. Three adult sandbar sharks were 20 to 26 years old based on bomb radiocarbon results and were a 5- to 11-year increase over the previous age estimates for these sharks. In support of these findings, the tag-recapture data provided results that were consistent with bomb radiocarbon dating and further supported a longevity that exceeds 30 years for this species.
Resumo:
Rockfishes (Sebastes spp.) support one of the most economically important f isheries of the Pacific Northwest and it is essential for sustainable management that age estimation procedures be validated for these species. Atmospheric testing of thermonuclear devices during the 1950s and 1960s created a global radiocarbon (14C) signal in the ocean environment that scientists have identified as a useful tracer and chronological marker in natural systems. In this study, we first demonstrated that fewer samples are necessary for age validation using the bomb-generated 14C signal by emphasizing the utility of the time-specific marker created by the initial rise of bomb-14C. Second, the bomb-generated 14C signal retained in fish otoliths was used to validate the age and age estimation method of the quillback rockfish (Sebastes maliger) in the waters of southeast Alaska. Radiocarbon values from the first years growth of quillback rockfish otoliths were plotted against estimated birth year to produce a 14C time series spanning 1950 to 1985. The initial rise in bomb-14C from prebomb levels (~ 90) occurred in 1959 [1 year] and 14C levels rose relatively rapidly to peak 14C values in 1967 (+105.4) and subsequently declined through the end of the time series in 1985 (+15.4). The agreement between the year of initial rise of 14C levels from the quillback rockfish time series and the chronology determined for the waters of southeast Alaska from yelloweye rockfish (S. ruberrimus) otoliths validated the aging method for the quillback rockfish. The concordance of the entire quillback rockfish 14C time series with the yelloweye rockfish time series demonstrated the effectiveness of this age validation technique, confirmed the longevity of the quillback rockfish up to a minimum of 43 years, and strongly confirms higher age estimates of up
Resumo:
The Philippine Expedition of 1907-10 was the longest and most extensive assignment of the Albatross's 39-year career. It came about because the United States had acquired the Philippines following the Spanish-American War of 1898 and the bloody Philippine Insurection of 1899-1902. The purpose of the expedition was to surbey and assess the aquatic resources of the Philippine Islands. Dr. Hugh M. Smith, the Deputy Commissioner of the U.S. Bureau of Fisheries, was the Director of the Expedition. Other scientific participants were Frederick M. Chamberlain, Lewis Radcliffe, Paul Bartsch, Harry C. Fasset, Clarence Wells, Albert Burrows, Alvin Seale, and Roy Chapman Andrews. The expedition consisted of a series of cruises, each beginning and ending in Manila and exploring a different part of the island group. In addition to the Philippines proper, the ship also explored parts of the Dutch East Indies and areas around Hong Kong and Taiwan. The expedition returned great quantities of fish and invertebrate speciments as well as hydrographic and fisheries data; most of the material was eventually deposited in the Smithsonian Institution's National Museum of Natural History. The fisehs were formally accessioned into the museum in 1922 and fell under the car of Barton A. Bean, Assistant Curator of Fishes, who then recruited Henry W. Fowler to work up the material. Fowler completed his studies of the entire collection, but only part of it was ever published, due in part to the economic constraints caused by the Depression. The material from the Philippine Expedition constituted the largest single accession of fishes ever received by the museum. These speciments are in good condition today and are still being used in scientific research.
Resumo:
As nearshore fish populations decline, many commercial fishermen have shifted fishing effort to deeper continental slope habitats to target fishes for which biological information is limited. One such fishery that developed in the northeastern Pacific Ocean in the early 1980s was for the blackgill rockfish (Sebastes melanostomus), a deep-dwelling (300800 m) species that congregates over rocky pinnacles, mainly from southern California to southern Oregon. Growth zone-derived age estimates from otolith thin sections were compared to ages obtained from the radioactive disequilibria of 210Pb, in relation to its parent, 226Ra, in otolith cores of blackgill rockfish. Age estimates were validated up to 41 years, and a strong pattern of agreement supported a longevity exceeding 90 years. Age and length data fitted to the von Bertalanffy growth function indicated that blackgill rockfish are slow-growing (k= 0.040 females, 0.068 males) and that females grow slower than males, but reach a greater length. Age at 50% maturity, derived from previously published length-at-maturity estimates, was 17 years for males and 21 years for females. The results of this study agree with general life history traits already recognized for many Sebastes species, such as long life, slow growth, and late age at maturation. These traits may undermine the sustainability of blackgill rockfish populations when heavy fishing pressure, such as that which occurred in the 1980s, is applied.