4 resultados para Anchoring
em Aquatic Commons
Resumo:
Coral reefs exist in warm, clear, and relatively shallow marine waters worldwide. These complex assemblages of marine organisms are unique, in that they support highly diverse, luxuriant, and essentially self-sustaining ecosystems in otherwise nutrient-poor and unproductive waters. Coral reefs are highly valued for their great beauty and for their contribution to marine productivity. Coral reefs are favorite destinations for recreational diving and snorkeling, as well as commercial and recreational fishing activities. The Florida Keys reef tract draws an estimated 2 million tourists each year, contributing nearly $800 million to the economy. However, these reef systems represent a very delicate ecological balance, and can be easily damaged and degraded by direct or indirect human contact. Indirect impacts from human activity occurs in a number of different forms, including runoff of sediments, nutrients, and other pollutants associated with forest harvesting, agricultural practices, urbanization, coastal construction, and industrial activities. Direct impacts occur through overfishing and other destructive fishing practices, mining of corals, and overuse of many reef areas, including damage from souvenir collection, boat anchoring, and diver contact. In order to protect and manage coral reefs within U.S. territorial waters, the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Department of Commerce has been directed to establish and maintain a system of national marine sanctuaries and reserves, and to monitor the condition of corals and other marine organisms within these areas. To help carry out this mandate the NOAA Coastal Services Center convened a workshop in September, 1996, to identify current and emerging sensor technologies, including satellite, airborne, and underwater systems with potential application for detecting and monitoring corals. For reef systems occurring within depths of 10 meters or less (Figure 1), mapping location and monitoring the condition of corals can be accomplished through use of aerial photography combined with diver surveys. However, corals can exist in depths greater than 90 meters (Figure 2), well below the limits of traditional optical imaging systems such as aerial or surface photography or videography. Although specialized scuba systems can allow diving to these depths, the thousands of square kilometers included within these management areas make diver surveys for deeper coral monitoring impractical. For these reasons, NOAA is investigating satellite and airborne sensor systems, as well as technologies which can facilitate the location, mapping, and monitoring of corals in deeper waters. The following systems were discussed as having potential application for detecting, mapping, and assessing the condition of corals. However, no single system is capable of accomplishing all three of these objectives under all depths and conditions within which corals exist. Systems were evaluated for their capabilities, including advantages and disadvantages, relative to their ability to detect and discriminate corals under a variety of conditions. (PDF contains 55 pages)
Resumo:
The distinguished character of Particularly Sensitive Sea Areas (PSSAs) is that every application for PSSAs must be accompanied by Associated Protected Measures (APMs) which can make PSSAs efficient in practice.1 That is why APMs are regarded as the core feature of every PSSA.2 APM is “an international rule or standard that falls within the purview of an international maritime organization (IMO) and regulates international maritime activities for the protection of the area at risk.” So far, APMs have been approved by IMO as following: -Compulsory or recommended pilotage -Mandatory ship reporting -An area to be avoided -Traffic separation schemes -Discharge prohibition or regulations -Mandatory no anchoring areas -Deep water routes -Emission control areas (PDF contains 5 pages)
Resumo:
The benthic habitats of Saba Bank (17°25′N, 63°30′W) are at risk from maritime traffic, especially oil tankers (e.g., anchoring). To mitigate this risk, information is needed on the biodiversity and location of habitats to develop a zone use plan. A rapid survey to document the biodiversity of macro-algae, sponges, corals and fishes was conducted. Here we report on the richness and condition of stony coral species at 18 select sites, and we test for the effects of bottom type, depth, and distance from platform edge. Species richness was visually assessed by roving scuba diver with voucher specimens of each species collected. Coral tissue was examined for bleaching and diseases. Thirty-three coral species were documented. There were no significant differences in coral composition among bottom types or depth classes (ANOSIM, P>0.05). There was a significant difference between sites (ANOSIM, P<0.05) near and far from the platform edge. The number of coral species observed ranged from zero and one in algal dominated habitats to 23 at a reef habitat on the southern edge of the Bank. Five reef sites had stands of Acropora cervicornis, a critically endangered species on the IUCN redlist. Bleaching was evident at 82% of the sites assessed with 43 colonies bleached. Only three coral colonies were observed to have disease. Combining our findings with that of other studies, a total of 43 species have been documented from Saba Bank. The coral assemblage on the bank is representative and typical of those found elsewhere in the Caribbean. Although our findings will help develop effective protection, more information is needed on Saba Bank to create a comprehensive zone use plan. Nevertheless, immediate action is warranted to protect the diverse coral reef habitats documented here, especially those containing A. cervicornis.
Resumo:
The Flower Garden Banks National Marine Sanctuary (FGBNMS) is located in the northwestern Gulf of Mexico approximately 180 km south of Galveston, Texas. The sanctuary’s distance from shore combined with its depth (the coral caps reach to within approximately 17 m of the surface) result in limited exposure of this coral reef ecosystem to natural and human-induced impacts compared to other coral reefs of the western Atlantic. In spite of this, the sanctuary still confronts serious impacts including hurricanes events, recent outbreaks of coral disease, an increase in the frequency of coral bleaching and the massive Diadema antillarum die-off during the mid-1980s. Anthropogenic impacts include large vessel anchoring, commercial and recreational fishing, recreational scuba diving, and oil and gas related activities. The FGBNMS was designated in 1992 to help protect against some of these impacts. Basic monitoring and research efforts have been conducted on the banks since the 1970s. Early on, these efforts focused primarily on describing the benthic communities (corals, sponges) and providing qualitative characterizations of the fish community. Subsequently, more quantitative work has been conducted; however, it has been limited in spatial scope. To complement these efforts, the current study addresses the following two goals put forth by sanctuary management: 1) to develop a sampling design for monitoring benthic fish communities across the coral caps; and 2) to obtain a spatial and quantitative characterization of those communities and their associated habitats.