2 resultados para Analytic torsion

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inlets are common coastal features around the world. Essentially an inlet connects a lagoon, a bay or an estuary to the ocean (or sea), and the flow through the inlet channel is primarily induced by the tidal rise and fall of water level in the ocean. When speaking of the hydraulics of an inlet, one is interested mainly in determining the flow through the inlet and the tidal variation in the bay, given the following: (1) Inlet geometry (2) Bay geometry (3) Bottom sediment characteristics in the inlet (4) Fresh water inflow into the bay (and out through the inlet) (5) Ocean tide characteristics A combination of all these factors can produce a rather complex situation. (PDF contains 34 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantifying scientific uncertainty when setting total allowable catch limits for fish stocks is a major challenge, but it is a requirement in the United States since changes to national fisheries legislation. Multiple sources of error are readily identifiable, including estimation error, model specification error, forecast error, and errors associated with the definition and estimation of reference points. Our focus here, however, is to quantify the influence of estimation error and model specification error on assessment outcomes. These are fundamental sources of uncertainty in developing scientific advice concerning appropriate catch levels and although a study of these two factors may not be inclusive, it is feasible with available information. For data-rich stock assessments conducted on the U.S. west coast we report approximate coefficients of variation in terminal biomass estimates from assessments based on inversion of the assessment of the model’s Hessian matrix (i.e., the asymptotic standard error). To summarize variation “among” stock assessments, as a proxy for model specification error, we characterize variation among multiple historical assessments of the same stock. Results indicate that for 17 groundfish and coastal pelagic species, the mean coefficient of variation of terminal biomass is 18%. In contrast, the coefficient of variation ascribable to model specification error (i.e., pooled among-assessment variation) is 37%. We show that if a precautionary probability of overfishing equal to 0.40 is adopted by managers, and only model specification error is considered, a 9% reduction in the overfishing catch level is indicated.