22 resultados para Alternatives
em Aquatic Commons
Resumo:
The implementation of various types of marine protected areas is one of several management tools available for conserving representative examples of the biological diversity within marine ecosystems in general and National Marine Sanctuaries in particular. However, deciding where and how many sites to establish within a given area is frequently hampered by incomplete knowledge of the distribution of organisms and an understanding of the potential tradeoffs that would allow planners to address frequently competing interests in an objective manner. Fortunately, this is beginning to change. Recent studies on the continental shelf of the northeastern United States suggest that substrate and water mass characteristics are highly correlated with the composition of benthic communities and may therefore, serve as proxies for the distribution of biological biodiversity. A detailed geo-referenced interpretative map of major sediment types within Stellwagen Bank National Marine Sanctuary (SBNMS) has recently been developed, and computer-aided decision support tools have reached new levels of sophistication. We demonstrate the use of simulated annealing, a type of mathematical optimization, to identify suites of potential conservation sites within SBNMS that equally represent 1) all major sediment types and 2) derived habitat types based on both sediment and depth in the smallest amount of space. The Sanctuary was divided into 3610 0.5 min2 sampling units. Simulations incorporated constraints on the physical dispersion of sampling units to varying degrees such that solutions included between one and four site clusters. Target representation goals were set at 5, 10, 15, 20, and 25 percent of each sediment type, and 10 and 20 percent of each habitat type. Simulations consisted of 100 runs, from which we identified the best solution (i.e., smallest total area) and four nearoptimal alternates. We also plotted total instances in which each sampling unit occurred in solution sets of the 100 runs as a means of gauging the variety of spatial configurations available under each scenario. Results suggested that the total combined area needed to represent each of the sediment types in equal proportions was equal to the percent representation level sought. Slightly larger areas were required to represent all habitat types at the same representation levels. Total boundary length increased in direct proportion to the number of sites at all levels of representation for simulations involving sediment and habitat classes, but increased more rapidly with number of sites at higher representation levels. There were a large number of alternate spatial configurations at all representation levels, although generally fewer among one and two versus three- and four-site solutions. These differences were less pronounced among simulations targeting habitat representation, suggesting that a similar degree of flexibility is inherent in the spatial arrangement of potential protected area systems containing one versus several sites for similar levels of habitat representation. We attribute these results to the distribution of sediment and depth zones within the Sanctuary, and to the fact that even levels of representation were sought in each scenario. (PDF contains 33 pages.)
Resumo:
Despite its wide acceptance in other fisheries, limited access remains a controversial topic among Pacific coast groundfish fishermen and fishery managers. It is controversial because it immediately opens a wide array of public policy issues. How should the public conserve fish stocks, and who should benefit from harvesting those fish? What are the costs and benefits to the public, the taxpayer, the fishing industry, and the coastal communities supporting the groundfish industry? Should the government push the industry to be economically efficient in harvesting; or should it discourage technical efficiency to conserve fish stocks? Should management preserve the economic status quo by protecting existing harvest shares? These are the broad issues occupying the discussions of policy makers and academic writers concerned with resource management. The goal of this introductory section is to define limited access, to dispel some basic misunderstandings about limited access, to clarify the optional forms oflimited access, and to review the various resource management objectives addressed. This should set the stage for the following more lengthy discussions. By reducing the scope of needless misunderstandings, it should also help to make future discussions of limited access more productive. (PDF file contains 52 pages.)
Resumo:
Diking and holding water on salt marshes ("impounding" the marsh) is a management technique used on Merritt Island National Wildlife Refuge (MINWR) and elsewhere in the Southeast to: a) prevent the reproduction of saltmarsh mosquitos, and b) attract wintertering waterfowl and other marsh, shore, and wading birds. Because of concern that diking and holding water may interfere with the production of estuarine fish and shellfish, impoundment managers are being asked to consider altering management protocol to reduce or eliminate any such negative influence. How to change protocol and preserve effective mosquito control and wildlife management is a decision of great complexity because: a) the relationships between estuarine organisms and the fringing salt marshes at the land-water interface are complex, and b) impounded marshes are currently good habitat for a variety of species of fish and wildlife. Most data collection by scientists and managers in the area has not been focused on this particular problem. Furthermore, collection of needed data may not be possible before changes in protocol are demanded. Therefore, the purpose of this document is two-fold: 1) to suggest management alternatives, given existing information, and 2) to help identify research needs that have a high probability of leading to improved simultaneous management of mosquitos, waterfowl, other wildlife, freshwater fish, and estuarine fish and shellfish on the marshland of the Merritt Island National Wildlife Refuge. (92 page document)
Resumo:
Vancouver Lake, located adjacent to the Columbia River and just north of the Vancouver-Portland metropolitan area, is a "dying" lake. Although all lakes die naturally in geologic time through the process of eutrophication,* Vancouver Lake is dying more rapidly due to man's activities and due to the resultant increased accumulation of sediment, chemicals, and wastes. Natural eutrophication takes thousands of years, whereas man-made modifications can cause the death of a lake in decades. Vancouver Lake does, however, have the potential of becoming a valuable water resource asset for the area, due particularly to its location near the Columbia River which can be used as a source of "flushing" water to improve the quality of Vancouver Lake. (Document pdf contains 59 pages) Community interest in Vancouver Lake has waxed and waned. Prior to World War II, there were relatively few plans for discussions about the Lake and its surrounding land area. A plan to drain the Lake for farming was prohibited by the city council and county commissioners. Interest increased in 1945 when the federal government considered developing the Lake as a berthing harbor for deactivated ships at which time a preliminary proposal was prepared by the City. The only surface water connection between Vancouver Lake and the Columbia River, except during floods, is Lake River. The Lake now serves as a receiving body of water for Lake River tidal flow and surface flow from creeks and nearby land areas. Seasonally, these flows are heavily laden with sediment, septic tank drainage, fertilizers and drainage from cattle yards. Construction and gravel pit operations increase the sediment loads entering the Lake from Burnt Bridge Creek and Salmon Creek (via Lake River by tidal action). The tidal flats at the north end of Vancouver Lake are evidence of this accumulation. Since 1945, the buildup of sediment and nutrients created by man's activities has accelerated the growth of the large water plants and algae which contribute to the degeneration of the Lake. Flooding from the Columbia River, as in 1968, has added to the deposition in Vancouver Lake. The combined effect of these human and natural activities has changed Vancouver Lake into a relatively useless body of shallow water supporting some wildlife, rough fish, and shallow draft boats. It is still pleasant to view from the hills to the east. Because precipitation and streamflow are the lowest during the summer and early fall, water quantity and quality conditions are at their worst when the potential of the Lake for water-based recreation is the highest. Increased pollution of the Lake has caused a larger segment of the community to become concerned. Land use and planning studies were undertaken on the Columbia River lowlands and a wide variety of ideas were proposed for improving the quality of the water-land environment in order to enhance the usefulness of the area. In 1966, the College of Engineering Research Division at Washington State University (WSU0 in Pullman, Washington, was contacted by the Port of Vancouver to determine possible alternatives for restoring Vancouver Lake. Various proposals were prepared between 1966 and 1969. During the summer and fall of 1967, a study was made by WSU on the existing water quality in the Lake. In 1969, the current studies were funded to establish a data base for considering a broad range of alternative solutions for improving the quantity and quality of Vancouver Lake. Until these studies were undertaken, practically no data on a continuous nature were available on Vancouver Lake, Lake River, or their tributaries. (Document pdf contains 59 pages)
Resumo:
Salvinia (Salvinia minima Willd.) is a water fern found in Florida waters, usually associated with Lemna and other small free-floating species. Due to its buoyancy and mat-forming abilities, it is spread by moving waters. In 1994, salvinia was reported to be present in 247 water bodies in the state (out of 451 surveyed public waters, Schardt 1997). It is a small, rapidly growing species that can become a nuisance due to its explosive growth rates and its ability to shade underwater life (Oliver 1993). Any efforts toward management of salvinia populations must consider that, in reasonable amounts, its presence is desirable since it plays an important role in the overall ecosystem balance. New management alternatives need to be explored besides the conventional herbicide treatments; for example, it has been shown that the growth of S. molesta can be inhibited by extracts of the tropical weed parthenium (Parthenium hysterophorus) and its purified toxin parthenin (Pande 1994, 1996). We believe that cattail, Typha spp. may be a candidate for control of S. minima infestations. Cattail is an aggressive aquatic plant, and has the ability to expand over areas that weren't previously occupied by other species (Gallardo et al. 1998a and references cited there). In South Florida, T. domingensis is a natural component of the Everglades ecosystem, but in many cases it has become the dominant marsh species, outcompeting other native plants. In Florida public waters, this cattail species is the most dominant emergent species of aquatic plants (Schardt 1997). Several factors enable it to accomplish opportunistic expansion, including size, growth habits, adaptability to changes in the surroundings, and the release of compounds that can prevent the growth and development of other species. We have been concerned in the past with the inhibitory effects of the T. domingensis extracts, and the phenolic compounds mentioned before, towards the growth and propagation of S. minima (Gallardo et al. 1998b). This investigation deals with the impact of cattail materials on the rates of oxygen production of salvinia, as determined through a series of Warburg experiments (Martin et al. 1987, Prindle and Martin 1996).
Resumo:
The word stress when applied to ecosystems is ambiguous. Stress may be low-level, with accompanying near-linear strain, or it may be of finite magnitude, with nonlinear response and possible disintegration of the system. Since there are practically no widely accepted definitions of ecosystem strain, classification of models of stressed systems is tenuous. Despite appearances, most ecosystem models seem to fall into the low-level linear response category. Although they sometimes simulate systems behavior well, they do not provide necessary and sufficient information about sudden structural changes nor structure after transition. Dynamic models of finiteamplitude response to stress are rare because of analytical difficulties. Some idea as to future transition states can be obtained by regarding the behavior of unperturbed functions under limiting strain conditions. Preliminary work shows that, since community variables do respond in a coherent manner to stress, macroscopic analyses of stressed ecosystems offer possible alternatives to compartmental models.
Resumo:
This report describes cases relating to the management of national marine sanctuaries in which certain scientific information was required so managers could make decisions that effectively protected trust resources. The cases presented represent only a fraction of difficult issues that marine sanctuary managers deal with daily. They include, among others, problems related to wildlife disturbance, vessel routing, marine reserve placement, watershed management, oil spill response, and habitat restoration. Scientific approaches to address these problems vary significantly, and include literature surveys, data mining, field studies (monitoring, mapping, observations, and measurement), geospatial and biogeographic analysis, and modeling. In most cases there is also an element of expert consultation and collaboration among multiple partners, agencies with resource protection responsibilities, and other users and stakeholders. The resulting management responses may involve direct intervention (e.g., for spill response or habitat restoration issues), proposal of boundary alternatives for marine sanctuaries or reserves, changes in agency policy or regulations, making recommendations to other agencies with resource protection responsibilities, proposing changes to international or domestic shipping rules, or development of new education or outreach programs. (PDF contains 37 pages.)
Resumo:
Whenever human beings have looked out on the sea, they have seen whales. First from the shore and later from ships when humanity entered the ocean realm as seafarers, we have responded to seeing these creatures with awe and wonder. Even when we hunted whales, a period well chronicled both in history and in literature, the sight of a whale brought an adrenaline rush that was not totally linked to potential economic gain. The first trips on boats specifically to watch, rather than hunt, whales began around 45 years ago in Southern California where the migrating gray whales, seen in the distance from land, drew vessels out for a closer look. Since that time whalewatching has boomed, currently conducted in over 40 countries around the world, including Antarctica, and estimated by economists at the Whale and Dolphin Conservation Society to have a 1999 worldwide economic value of around $800 million USD. The economic contribution to local coastal communities is particularly significant in developing countries and those where declining fish populations (and in some cases like the Japanese, international bans on whaling) have driven harvesters to look for viable alternatives. Clearly, whalewatching is now, in many places around the world, a small but thriving part of the regional economy. Like in the days of whaling, we still get the rush, but for some, money is back contributing to the physiological response. (PDF contains 90 pages.)
Resumo:
Accurate and precise estimates of age and growth rates are essential parameters in understanding the population dynamics of fishes. Some of the more sophisticated stock assessment models, such as virtual population analysis, require age and growth information to partition catch data by age. Stock assessment efforts by regulatory agencies are usually directed at specific fisheries which are being heavily exploited and are suspected of being overfished. Interest in stock assessment of some of the oceanic pelagic fishes (tunas, billfishes, and sharks) has developed only over the last decade, during which exploitation has increased steadily in response to increases in worldwide demand for these resources. Traditionally, estimating the age of fishes has been done by enumerating growth bands on skeletal hardparts, through length frequency analysis, tag and recapture studies, and raising fish in enclosures. However, problems related to determining the age of some of the oceanic pelagic fishes are unique compared with other species. For example, sampling is difficult for these large, highly mobile fishes because of their size, extensive distributions throughout the world's oceans, and for some, such as the marlins, infrequent catches. In addition, movements of oceanic pelagic fishes often transect temperate as well as tropical oceans, making interpretation of growth bands on skeletal hardparts more difficult than with more sedentary temperate species. Many oceanic pelagics are also long-lived, attaining ages in excess of 30 yr, and more often than not, their life cycles do not lend themselves easily to artificial propagation and culture. These factors contribute to the difficulty of determining ages and are generally characteristic of this group-the tunas, billfishes, and sharks. Accordingly, the rapidly growing international concern in managing oceanic pelagic fishes, as well as unique difficulties in ageing these species, prompted us to hold this workshop. Our two major objectives for this workshop are to: I) Encourage the interchange of ideas on this subject, and 2) establish the "state of the art." A total of 65 scientists from 10 states in the continental United States and Hawaii, three provinces in Canada, France, Republic of Senegal, Spain, Mexico, Ivory Coast, and New South Wales (Australia) attended the workshop held at the Southeast Fisheries Center, Miami, Fla., 15-18 February 1982. Our first objective, encouraging the interchange of ideas, is well illustrated in the summaries of the Round Table Discussions and in the Glossary, which defines terms used in this volume. The majority of the workshop participants agreed that the lack of validation of age estimates and the means to accomplish the same are serious problems preventing advancements in assessing the age and growth of fishes, particularly oceanic pelagics. The alternatives relating to the validation problem were exhaustively reviewed during the Round Table Discussions and are a major highlight of this workshop. How well we accomplished our second objective, to establish the "state of the art" on age determination of oceanic pelagic fishes, will probably best be judged on the basis of these proceedings and whether future research efforts are directed at the problem areas we have identified. In order to produce high-quality papers, workshop participants served as referees for the manuscripts published in this volume. Several papers given orally at the workshop, and included in these proceedings, were summarized from full-length manuscripts, which have been submitted to or published in other scientific outlets-these papers are designated as SUMMARY PAPERS. In addition, the SUMMARY PAPER designation was also assigned to workshop papers that represented very preliminary or initial stages of research, cursory progress reports, papers that were data shy, or provide only brief reviews on general topics. Bilingual abstracts were included for all papers that required translation. We gratefully acknowledge the support of everyone involved in this workshop. Funding was provided by the Southeast Fisheries Center, and Jack C. Javech did the scientific illustrations appearing on the cover, between major sections, and in the Glossary. (PDF file contains 228 pages.)
Resumo:
The basis for a long-term profitable fishery is a precautionary and environment-compatible use of fish stocks. The fishery management presently models the exploitation through the parameters of fishing mortality and the age at first capture. These two parameters are translated into the technical measures of fishing effort and mesh openings and quotas, which are then used in practice for controlling the fishery. Stock protection can be achieved by reducing the fishing effort, by assigning smaller quotas, by reducing the number of days at sea, or by increasing the mesh opening. The respective protection measures have different effects on the development of the stocks but also on the revenue obtained by the fishery. These alternatives have been examined taking as an example the cod stock in the western Baltic. The optimization goal was the maximization of profit observing at the same time the prerequisites for stock protection according to the precaution approach. For these calculations the same models and data have been used as are beeing used in the stock management of the ACFM of ICES. The response of altered technical measures to the recruitment of cod stock was considered, and a proposal to overcome overfishing of cod in the western Baltic Sea was derived.
Resumo:
Since the beginning of the nineties the situation of the Baltic cod stock is deteriorating constantly. The fishery administration (International Baltic Sea Fisheries Commission) tries to counter this by issuing new technical measures. Existing measures (raise of mesh opening from 105 to 120 mm, “Danish” and “Swedish” escape windows) and newly introduced technical measures (BACOMA codend and raise of the mesh opening in conventional codends to 130 mm) show a number of deficiencies putting their efficiency in doubt. Available well tested alternatives to the newly introduced measures without their negative side effects (codends made of netting turned by 90°, and other designs) are presently left out of regard. Models of socioeconomic effects are likewise ignored.
Resumo:
A review article which discusses the ecology and management of common water plants in lowland streams, with an introduction containing a review of previous studies on the subject. The article covers the significance of seasonal growth, the significance of stand structure (particularly in relation to hydraulic resistence), an assessment of current river management, improvements to plant management techniques (in relation to cutting), and alternatives to the traditional techniques of river plant management. There are a number of accompanying figures.
Resumo:
The biomass of the phytoplankton and its composition is one of the most important factors in water quality control. Determination of the phytoplankton assemblage is usually done by microscopic analysis (Utermöhl's method). Quantitative estimations of the biovolume, by cell counting and cell size measurements, are time-consuming and normally are not done in routine water quality control. Several alternatives have been tried: computer-based image analysis, spectral fluorescence signatures, flow cytometry and pigment fingerprinting aided by high performance liquid chromatography (HPLC). The latter method is based on the fact that each major algal group of taxa contains a specific carotenoid which can be used for identification and relative quantification of the taxa in the total assemblage. This article gives a brief comparative introduction to the different techniques available and presents some recent results obtained by HPLC-based pigment fingerprinting, applied to three lakes of different trophic status. The results show that this technique yields reliable results from different lake types and is a powerful tool for studying the distribution pattern of the phytoplankton community in relation to water depth. However, some restrictions should be taken into account for the interpretation of routine data.