13 resultados para AISI 420
em Aquatic Commons
Resumo:
Keys and outline drawings are provided for the identification of the otoliths of 142 species of marine fishes from the Gulf of Alaska, Bering Sea, and Beaufort Sea. (PDF contains 40 pages)
Resumo:
Demographic parameters from seven exploited coral reef lutjanid species were compared as a case study of the implications of intrafamily variation in life histories for multispecies harvest management. Modal lengths varied by 4 cm among four species (Lutjanus fulviflamma, L. vitta, L. carponotatus, L. adetii), which were at least 6 cm smaller than the modal lengths of the largest species (L. gibbus, Symphorus nematophorus, Aprion virescens). Modal ages, indicating ages of full selection to fishing gear, were 10 years or less for all species, but maximum ages ranged from 12 (L. gibbus) to 36 years (S. nematophorus). Each species had a unique growth pattern, with differences in length-at-age and mean asymptotic fork length (L∞), but smaller species generally grew fast during the first 1–2 years of life and larger species grew more slowly over a longer period. Total mortality rates varied among species; L. gibbus had the highest mortality and L. fulviflamma, the lowest mortality. The variability in life history strategies of these tropical lutjanids makes generalizations about lutjanid life histories difficult, but the fact that all seven had characteristics that would make them particularly vulnerable to fishing indicates that harvest of tropical lutjanids should be managed with caution.
Resumo:
The reproductive biology of blue marlin (Makaira nigricans) was assessed from 1001 fish (ranging from 121 to 275 cm in eye-to-fork length; EFL) caught by Taiwanese offshore longliners in the western Pacific Ocean from September 2000 to December 2001 and from 843 gonad samples from these fish, The overall sex ratio of the catch was approximately 1:1 dur ing the sampling period, but blue marlin are sexually dimorphic; females are larger than males. Reproductive activity (assessed by histology), a gonadosomatic index, and the distribution of oocyte diameters, indicated that spawning occurred predominantly from May to September. The estimated sizes-at-maturity (EFL50) were 179.76 ±1.01 cm (mean ±standard error) for females and 130 ±1 cm EFL for males. Blue marlin are multiple spawners and oocytes develop asynchronously. The proportion of mature females with ovaries containing postovulatory follicles (0.41) and hydrated oocytes (0.34) indicated that the blue marlin spawned once every 2–3 days on average. Batch fecundity (BF) for 26 females with the most advanced oocytes (≥1000 μm), but without postovulatory follicles, ranged from 2.11 to 13.50 million eggs (6.94 ± 0.54 million eggs). The relationships between batch fecundity (BF, in millions of eggs) and EFL and round weight (RW, kg) were BF = 3.29 × 10 –12 EFL5.31 (r2 = 0.70) and BF = 1.59 × 10–3 RW 1.73 (r2= 0.67), respectively. The parameters estimated in this study are key information for stock assessments of blue marlin in the western Pacific Ocean and will contribute to the conservation and sustainable yield of
Resumo:
Technological innovation has made it possible to grow marine finfish in the coastal and open ocean. Along with this opportunity comes environmental risk. As a federal agency charged with stewardship of the nation’s marine resources, the National Oceanic and Atmospheric Administration (NOAA) requires tools to evaluate the benefits and risks that aquaculture poses in the marine environment, to implement policies and regulations which safeguard our marine and coastal ecosystems, and to inform production designs and operational procedures compatible with marine stewardship. There is an opportunity to apply the best available science and globally proven best management practices to regulate and guide a sustainable United States (U.S.) marine finfish farming aquaculture industry. There are strong economic incentives to develop this industry, and doing so in an environmentally responsible way is possible if stakeholders, the public and regulatory agencies have a clear understanding of the relative risks to the environment and the feasible solutions to minimize, manage or eliminate those risks. This report spans many of the environmental challenges that marine finfish aquaculture faces. We believe that it will serve as a useful tool to those interested in and responsible for the industry and safeguarding the health, productivity and resilience of our marine ecosystems. This report aims to provide a comprehensive review of some predominant environmental risks that marine fish cage culture aquaculture, as it is currently conducted, poses in the marine environment and designs and practices now in use to address these environmental risks in the U.S. and elsewhere. Today’s finfish aquaculture industry has learned, adapted and improved to lessen or eliminate impacts to the marine habitats in which it operates. What progress has been made? What has been learned? How have practices changed and what are the results in terms of water quality, benthic, and other environmental effects? To answer these questions we conducted a critical review of the large body of scientific work published since 2000 on the environmental impacts of marine finfish aquaculture around the world. Our report includes results, findings and recommendations from over 420 papers, primarily from peer-reviewed professional journals. This report provides a broad overview of the twenty-first century marine finfish aquaculture industry, with a targeted focus on potential impacts to water quality, sediment chemistry, benthic communities, marine life and sensitive habitats. Other environmental issues including fish health, genetic issues, and feed formulation were beyond the scope of this report and are being addressed in other initiatives and reports. Also absent is detailed information about complex computer simulations that are used to model discharge, assimilation and accumulation of nutrient waste from farms. These tools are instrumental for siting and managing farms, and a comparative analysis of these models is underway by NOAA.
Resumo:
Fifteen morphometric and four meristic characters of Saurida tumbil were studied and their relationships with total length and head length were established. The length weight relationship worked out to be W= -5.6055 L(super)3.291. The fish is a carnivore, feeding mainly on small fishes, molluscs and crustaceans. Larger fishes are selective feeders on fish. It is a long protracted spawner. Fecundity varied from 6008 to 17384 eggs in specimens of size group 212-420 mm. Fecundity-total length, fecundity-total weight of fish and fecundity - total weight of ovary relationships were worked out to be F=0.9414 L(super)1.6626, F=180.7069 W(super)0.7531 and F=3153.0375 W(super)0.8278 respectively.
Resumo:
The study was conducted to compare the performance of different nursing practices of giant freshwater prawn (Macrobrachium rosenbergii) post-larvae (PL). Three treatments such as only fertilizers (T1), fertilizers with 5% supplementary feed (local feed) (T2), and 10% commercial feed (T3) were applied in the nursing system of prawn PLs in earthen pond. An earthen pond (315m²) was divided into nine equal small ponds by fine meshed nylon nets. Feeds were used once daily on a tray placed near the pond bottom. There was a significant difference (p<0.05) in some water quality parameters like pH and total alkalinity, but all measured water quality parameters viz. water temperature, transparency, dissolved oxygen and ammonia-nitrogen were within the acceptable range for nursing of prawn PL. The results showed that the mean final lengths of prawn post-larvae were 6.3±0.07 cm, 7.12±0.22 cm and 8.17±0.16 cm in T1, T2 and T3, respectively. There were significant difference (p<0.05) in mean final length of prawn PL among the treatments. Significantly higher (p<0.05) average daily weight gain was observed in T3 (0.071 ±0.007 g) than in T2 (0.052±0.006 g) and T1 (0.031 ±0.002 g). The specific growth rate (SGR) of T3 (8.81±0.26) was found significantly higher (p<0.05) than T2 (8.35±0.22) and T1 (7.42±0.11). Survival rate (%) was also significantly higher (p<0.05) in T3 (66.24±1.58) than in T2 (60.52±1.64) and T1 (53.86±2.71). Therefore, it may be concluded that the growth and survival in prawn nursery was better in commercial feed than only fertilizers and fertilizers with local feeds.
Resumo:
A map is provided showing the location of milkfish rearing facilities in the Philippines. Most of the 17,443 milkfish broodstocks are located in central Philippines. A table shows details as to the rearing facility (cage, pen, pond, tank), number of broodstocks, and age. There are 13,420 broodstocks in ponds; 2,081 in cages; 842 in tanks, and 1,100 in pens. The youngest is 3 years, the oldest 23 years old.
Resumo:
This work is based on the analysis of 420 planktonic samples of 7 oceanopraphic cruises distributed over the Argentine, Uruguayan and South brasilian continental shelf (SW Atlantic ocean), as well as from some oceanic sectors, adjacent to the continental slope. Vertical hauls were performed in all stations from 100 m depth to surface, except in the Walter Herwig cruise (where vertical hauls were predominantly performed out of slope sectors, between 300 and 500 m depth to surface) and Productividad cruise in which only surface waters were hauled. A list of 27 species are determined, corresponding to 5 families: Iospilidae (3 species), Lopadorrhynchidae (4), Alciopidae (9), Typhloscolecidae (5) and Tomopteridae (6). Larvae and epitokous forms of benthonic species are not taken into account. The genus Iospilus is revised, Pariospilus and Iospilopsis being considered their synonyms; the identity of Pariospilus affinis Viguier is maintained, being transferred to the genus Iospilus. The species Vanadis studeri Apstein is redescribed and its synonymy is established. The taxonomic value of the apical glands of Tomopteris species is discussed and some specimens are found to coincide with T. kefersteini in relation to the mentioned glands. All the species found in this work are described and illustrated, a systematic key being added for their identification. Considering the vertical nature of the hauls, it was not possible to specify the habitats of the different species; for this reason they are grouped as species from subtropical and subantartic areas of influence. The first group, made up of 17 species, shows and evident graduation in its latitudinal distribution, some of them being more restricted in their distribution than the others. The second group, of 4 species, is found south to the tropical convergence, in transitional waters, towards cold sectors. The third group, of 6 species, is found to be distributed all along the continental shelf, in subtropical and subantartic regions, and extending their distribution northwards, possibly related to deep water levels. The general scheme is coincident with the distribution of other planktonic groups (Copepods, Euphausiids). As a general feature, neither coastal nor shelf water specimens of pelagic Polychaeta were found, with exception of T. septentrionalis. A comparison with the results in Tebble's paper (1960) in the southwest Atlantic ocean is made, 12 of our species being coincidently found in the same hydrological area by that author. The drift of the main water masses of the South Atlantic ocean is accepted as a possible cause for the distribution of the pelagic Polychaeta of the southwest Atlantic regions.