5 resultados para Aço inoxidável austenítico Cr-Mn (1.4376)

em Aquatic Commons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document contains analytical methods that detail the procedures for determining major and trace element concentrations in bivalve tissue and sediment samples collected as part of the National Status and Trends Program (NS&T) for the years 2000-2006. Previously published NOAA Technical Memoranda NOS ORCA 71 and 130 (Lauenstein and Cantillo, 1993; Lauenstein and Cantillo, 1998) detail trace element analyses for the years 1984-1992 and 1993-1996, respectively, and include ancillary, histopathology, and contaminant (organic and trace element) analytical methods. The methods presented in this document for trace element analysis were utilized by the NS&T Mussel Watch and Bioeffects Projects. The Mussel Watch Project has been monitoring contaminants in bivalves and sediment for over 20 years, and is the longest active contaminant monitoring program operating in U.S. costal waters. Approximately 280 Mussel Watch sites are monitored on biennial and decadal timescales using bivalve tissue and sediment, respectively. The Bioeffects Project applies the sediment quality approach, which uses sediment contamination measurements, toxicity tests and benthic macroinfauna quantification to characterize pollution in selected estuaries and coastal embayments. Contaminant assessment is a core function of both projects. Although only one contract laboratory was used by the NS&T Program during the specified time period, several analytical methods and instruments were employed. The specific analytical method, including instrumentation and detection limit, is noted for each measurement taken and can be found at http://NSandT.noaa.gov. The major and trace elements measured by the NS&T Program include: Al, Si, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Sn, Sb, Ag, Cd, Hg, Tl and Pb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research was carried out to assess the trace metal concentration in sediments of ship breaking area in Bangladesh. The study areas were separated into Ship breaking Zone and Reference Site for comparative analysis. Metals like Iron ( Fe) was found at 11932 to 41361.71µg.g-1 in the affected site and 3393.37 µg.g-1 in the control site. Manganese (Mn) varied from 2.32 to 8.25 µg.g-1 in the affected site where as it was recorded as 1.8 µg.g-1 in the control area. Chromium(Cr), Nickel (Ni), Zinc(Zn) and Lead (Pb) were also varied from 22.89 to 86.72 µg.g-1; 23.12 to 48.6;83.78 to 142.85 and 36.78 to 147.83 µg.g-1 respectively in the affected site whereas these were recorded as 19; 3.98; 22.22 and 8.82 µg.g-1 in the control site. Copper (Cu); Cadmium (Cd) and Mercury (Hg) concentration were varied from 21.05 to 39.85; 0.57 to 0.94 and 0.05 to 0.11 µg.g-1 in the affected site and 33.0; 0.115 and 0.01 µg.g-1 in the control site. It may conclude that heavy metal pollution in sediments at ship breaking area of Bangladesh is at alarming stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trace elements associated with organic subfractions (humic, fulvic, and non-humic substances) were identified for seven core sediments from Lake Mariut, Egypt. Results indicated that the amounts of trace metals in humic acid and non-humic substances decreased in the following order: Zn>Cu>Pb>Cr>Cd, while in fulvic acid the order the order was Cu>Zn>Pb>Cr>Cd. There is a higher contribution of Zn, Pb, Cu and Cr in humic acid compared to fulvic acid in most samples. Slight changes in the amounts of cadmium bounded with humic and fulvic acids was also found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The water and bottom sediments of Lake Victoria (Kenya) were analysed for A1, Fe, Mn, Zn, Pb, Cu, Cr and Cd. The total metal concentrations were determined and their mean variations and distributions discussed. The bottom lake waters showed higher concentration levels than the surface waters. The range of values (in mg/l) in the bottom and surface lake waters were as follows: Surface Waters: A1(0.08 - 3.98), Fe(0.09 - 4.01), Mn(0.02 - 0.10). Zn(0.01 -0.07), Pb(0.001- 0.007), Cu(not detected - 0.006), Cr(not detected - 0.004). Bottom Waters: A1(0.1 0 - 6.59), Fe(0.23 - 9.64), Mn(0.04 - 0.39), Zn(0.01- 0.08), Pb(0.002 - 0.009), Cu(not detected - 0.03). Cr(not detected -0.002). River mouths and shallow areas in the lake showed higher total metal concentrations than offshore deeper areas. Apart from natural metal levels, varied urban activities and wastes greatly contribute to the lake metal pollution as shown by high Pb and Zn levels in sediments, around Kisumu and Homa Bay areas. Other comparatively high values and variations could be attributed to the varied geological characteristics of the lake and its sediments. Compared to the established W.H.O (1984) drinking water standards manganese, aluminium and iron levels were above these limits whereas zinc, lead, chromium, copper and cadmium were below.