3 resultados para 88-PCM-4

em Aquatic Commons


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shear stress, generated by water movement, can kill fish eggs and larvae by causing rotation or deformation. Through the use of an experimental apparatus, a series of shear (as dynes/cm2)-mortality equations for fixed time exposures were generated for striped bass and white perch eggs and larvae. Exposure of striped bass eggs to a shear level of 350 dynes/cm2 kills 36% of the eggs in 1 min; 69% in 2 min, and 88% in 4 min; exposure of larvae to 350 dynes/cm2 kills 9.3% in 1 min, 30.0% in 2 min, and 68.1% in 4 min. A shear level of 350 dynes/cm2 kills 38% of the white perch eggs in 1 min, 41% in 2 min, 89% in 5 min, 96% in 10 min, and 98% in 20 min. A shear level of 350 dynes/cm2 applied to white perch larvae destroys 38% of the larvae in 1 min, 52% in 2 min, and 75% in 4 min. Results are experimentally used in conjunction with the determination of shear levels in the Chesapeake and Delaware Canal and ship movement for the estimation of fish egg and larval mortalities in the field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first aim of this research was to identify fatty acids, amino acids composition of Thunnus tonggol roe and their changes during cold storage (-18'C). The second aim was to determine the changes of moisture, protein, fat and ash contents of the roe during one year cold storage (-18'C). 60 samples of longtail tuna (Thunnus tonggol) ovaries were randomly collected form Bandar-e-Abbas landings. The samples were frozen at-30'C and kept in cold store at -18'C for one year. According to a time table, the samples were examined for identification of fatty acids, amino acids, moisture, protein, fat, ash, peroxide and T.V.N. and their changes were evaluated during this time. The results showed that 26 fatty acids were identified. The unsaturated fatty acids (UFA) and saturated fatty acids (SFA) were 62.33 and 37.6%, respectively, in fresh roe. So that, DHA (C22:6) and oleic acid (C18:1) had high amounts (24.79 and 21.88%) among the UFA and palmitic acid (C16:0) was the most content (22.75%) among the SFA. The PUFA/SFA was 0.91. Also, 17 amino acids were identified that essential amino acids (EAA) and nonessential amino acids (NE) were 10478 and 7562 mg/100g, respectively, and E/NE was 1.38. Among the EAA and NE, lysine (2110mg/100g) and aspartic acid (1924 mg/100g) were the most contents. Also, results showed that moisture, ash, protein and fat contents were 72.74, 1.8, 19.88 and 4.53%, respectively, in fresh roe. The effects of freezing and cold storage on the roes showed that UFA and SFA contents have reached to 49.83 and 48.07%, respectively, at the end of cold storage. It indicated that these compounds change to each other during frozen storage. Also, n-3 and n-6 series of fatty acids were 32.75 and 1.61% in fresh roe. But their contents decreased to 22.96 and 1.25% at the end of period. Among the fatty acids, 22:6 and C16:0 had the most changes. The changes of fatty acids were significantly at 95% level except for C15:1, C18:3(n-3) and C20:4(n-6). All of the amino acids decreased in frozen storage and their changes were significantly (P<0.05). EAA was 7818 mg/100g and E/NE was 1.27 at the end of storage period. Among the amino acids, leucine and lysine had the most changes. Moisture, ash, protein and fat contents were 70.13, 1.82, 19.4 and 6.51%, respectively, at the end of storage period. The peroxide value and T.V.N. increased during storage. So that, their contents have reached to 5.86 mg/kg and 26.37 mg/100 g, respectively, at the end of frozen storage. The best shelf life of Thunnus tonggol roe was 6 or 7 months, because of lipid oxidation and increasing of peroxide.