6 resultados para 737
em Aquatic Commons
Resumo:
Environmental studies of power plants have recently shifted their emphasis from examination of the effects of heated discharges to studies of the impacts of entire cooling systems. One of the major impacts arises when planktonic organisms are carried into and through a plant with the cooling water. Because of their relatively immobile, free-floating character, planktonic organisms are highly vulnerable to being "entrained" or passively drawn into the cooling water condenser systems of power plants. More than 70% of estuarine animals have planktonic eggs and larvae. The environmental impact of entrainment is related to the composition and abundance of affected organisms, the numbers of organisms in the adjacent waters, survival rates during entrainment as related to natural survival, the ecological roles of entrained organisms, and their reproductive strategies.
Resumo:
Studies were conducted to identify and quantify the proximate factors responsible for the emigration of juvenile bonga Ethmalosa fimbriata (Bowdich, 1825) from the Cross River estuary. A time series of bonga cpue, salinity, turbidity and plankton abundance was undertaken, juvenile bonga was abundant in the estuary when salinities ranged between 1 and 9ppt. at salinities outside this range, they were absent. We conclude that salinity is the proximate factor that initiates the emigration of juvenile bonga from the estuary
Resumo:
The data from two years' monitoring of the Tongan seamount fishery were analyzed the two main export species are Pristipomoides filamentosus and Etelis coruscans. K.R. Allen's model was used to obtain estimates of catchability and recruitment and of a surplus production of 737 kg per nautical mile (nm) of 200 m contour. This compared reasonably well to total landings. Using this estimate, the annual surplus production for Tonga's 294 nm of 200 m contour is 217 t. The level of fishing mortality was found to be 0.3/year.
Resumo:
The green sea urchin (Strongylocentrotus droebachiensis) is important to the economy of Maine. It is the state’s fourth largest fishery by value. The fishery has experienced a continuous decline in landings since 1992 because of decreasing stock abundance. Because determining the age of sea urchins is often difficult, a formal stock assessment demands the development of a size-structured population dynamic model. One of the most important components in a size-structured model is a growth-transition matrix. We developed an approach for estimating the growth-transition matrix using von Bertalanffy growth parameters estimated in previous studies of the green sea urchin off Maine. This approach explicitly considers size-specific variations associated with yearly growth increments for these urchins. The proposed growth-transition matrix can be updated readily with new information on growth, which is important because changes in stock abundance and the ecosystem will likely result in changes in sea urchin key life history parameters including growth. This growth-transition matrix can be readily incorporated into the size-structured stock assessment model that has been developed for assessing the green sea urchin stock off Maine.