16 resultados para 640400 Prevention and Treatment of Pollution
em Aquatic Commons
Resumo:
INTRODUCTION: This report summarizes the results of NOAA's sediment toxicity, chemistry, and benthic community studies in the Chesapeake Bay estuary. As part of the National Status and Trends (NS&T) Program, NOAA has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are viewed as important goals of coastal resource management. Benthic community studies have a history of use in regional estuarine monitoring programs and have been shown to be an effective indicator for describing the extent and magnitude of pollution impacts in estuarine ecosystems, as well as for assessing the effectiveness of management actions. Chesapeake Bay is the largest estuarine system in the United States. Including tidal tributaries, the Bay has approximately 18,694 km of shoreline (more than the entire US West Coast). The watershed is over 165,000 km2 (64,000 miles2), and includes portions of six states (Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia) and the District of Columbia. The population of the watershed exceeds 15 million people. There are 150 rivers and streams in the Chesapeake drainage basin. Within the watershed, five major rivers - the Susquehanna, Potomac, Rappahannock, York and James - provide almost 90% of the freshwater to the Bay. The Bay receives an equal volume of water from the Atlantic Ocean. In the upper Bay and tributaries, sediments are fine-grained silts and clays. Sediments in the middle Bay are mostly made of silts and clays derived from shoreline erosion. In the lower Bay, by contrast, the sediments are sandy. These particles come from shore erosion and inputs from the Atlantic Ocean. The introduction of European-style agriculture and large scale clearing of the watershed produced massive shifts in sediment dynamics of the Bay watershed. As early as the mid 1700s, some navigable rivers were filled in by sediment and sedimentation caused several colonial seaports to become landlocked. Toxic contaminants enter the Bay via atmospheric deposition, dissolved and particulate runoff from the watershed or direct discharge. While contaminants enter the Bay from several sources, sediments accumulate many toxic contaminants and thus reveal the status of input for these constituents. In the watershed, loading estimates indicate that the major sources of contaminants are point sources, stormwater runoff, atmospheric deposition, and spills. Point sources and urban runoff in the Bay proper contribute large quantities of contaminants. Pesticide inputs to the Bay have not been quantified. Baltimore Harbor and the Elizabeth River remain among the most contaminated areas in the Unites States. In the mainstem, deep sediment core analyses indicate that sediment accumulation rates are 2-10 times higher in the northern Bay than in the middle and lower Bay, and that sedimentation rates are 2-10 times higher than before European settlement throughout the Bay (NOAA 1998). The core samples show a decline in selected PAH compounds over the past several decades, but absolute concentrations are still 1 to 2 orders of magnitude above 'pristine' conditions. Core data also indicate that concentrations of PAHs, PCBs and, organochlorine pesticides do not demonstrate consistent trends over 25 years, but remain 10 times lower than sediments in the tributaries. In contrast, tri-butyl-tin (TBT) concentrations in the deep cores have declined significantly since it=s use was severely restricted. (PDF contains 241 pages)
Resumo:
Technological progress, having reached in our time an unprecedented speed, is still increasing the rate of mineral extraction, industrial construction, and the mastering of new kinds of energy is growing. Correspondingly the anthropogenic load on the biosphere is increased and that requires the comprehensive development of monitoring the anthropogenic changes in the natural environment. Among problems resulting from the scientific-technological development, a noticeable place is given to the problem of pure water. Surface land waters proved to be a sensitive link in the natural environment. The hydrobiological service for observations and control of the surface waters is one of the subsystems of the State/Federal Service for Observations and Control of pollution levels in environmental objects, conducted by the USSR State Committee for Hydrometeor- ology and Control of the Natural Environment. This paper summarises the the main principles of the organisation and goals of the national system of monitoring of the state of the natural environment in the USSR.
Resumo:
In this study, which has been done in Hormoz larve Hatchery at Kohestak in Minab at 1385, the efficiency of Ergosen and Vibromax vaccine and the effect of them on growth factors such as total length, Carapase, dry weight and the number of upper mordents of rostrum and survival of the stages of larvae and post larvae of Indian white shrimp was studied. Thus in order to comparison the effects of Vibromax and Ergosen, each of them separately, in one treatment, and in another simultaneously with one control treatment was used. Vaccination against larvae shrimps was done through Artemia. This study used four treatments with three replicates in a completely randomized design and comparison of means was done through Duncan test. Breeding larvae and post larvae of Indian white shrimp from zoa I stage to PL 15 was done in 20 litter plastic buckets. Present results indicated that the highest amount of growth and survival factors in larvae stage (from zoa to PL1), and also in stages of PL5 and PL15, in the treatment of Ergoson effect + vaccine and it was with a little difference from that treatment of Ergoson effect which was in high significance difference in regard to control treatment at α<0.01 level and treatment of vaccine effect and control treatment at α<0.01 level often have no significant difference. This research used environmental stress tests to study the quality of post larvae under experiment. Studying in this field showed that feeding vaccine to larvae of Indian shrimps which was done through Artemia nauplii enrichment ,and ergosen , in treatment of ergosen vaccine lead to more resistance of post larvaes against salinity stress tests and formalin .This case was observed in every three stages ,so that in stress formalin test 100 parts per million and also 10 and 20 salinity parts in thousands the most survival was observed in treatment of Ergosan effect+vaccine and after that in treatment of Ergoson effect and with a little difference in treatment of vaccine effect. Of course this case, in treatment of Ergoson effect + vaccine due to the synergistic properties vaccine with Ergoson was more than to other treatments, while every three treatments, in most stages had significant difference toward control treatment at α<0.01 level and the control treatment because of not having Ergoson and nauplii artemia with vaccine, having the least survival rate in this stages.
Resumo:
Ozone due to having low half-life and devoid of environmental harmful effects is recognized as one of the most effective disinfectant and fungicide in aquaculture. The objective of this study is to consider the effects of periodicay ozonation, hydrogen peroxide treatment, and physical treatment capability in hatching rate enhancement. Three concentrations of 0.05, 0.1 and 0.15 ppm ozone (10 min) and peroxide hydrogen with dose of 500 and 1000 ppm in two procedures accompanied with physical treatment and without physical treatment were examined on hatching rate. In the first year, Egg ozonation (0.1 ppm) with physical treatment have been resulted the greatest hatching rate (81.4%). In the second year, egg treatment with 1000 ppm hydrogen peroxide with physical treatment have been showed the greatest hatching rate (78%). Average hatching rate for the blank control treatment (without disinfectin and physical treatment) was 32.7%. From the economic viewpoint, 0.05 ppm ozone with physical treatment, due to considerable minimizing at consumption energy and ozonation system retention costs, indicated as the best treatment than other ozone treatments for fungal control. Very low correlation (r=-0.14) have been observed between hatchery water temperature and fungal infection percentage in control treatment.
Resumo:
(pdf contains 418 pages)
Resumo:
Ciguatera Fish Poisoning (CFP) is the most frequently reported seafood-toxin illness in the world, and it causes substantial physical and functional impact. It produces a myriad of gastrointestinal, neurologic and/or cardiovascular symptoms which last days to weeks, or even months. Although there are reports of symptom amelioration with some interventions (e.g. IV mannitol), the appropriate treatment for CFP remains unclear to many physicians. We review the literature on the treatments for CFP, including randomized controlled studies and anecdotal reports. The article is intended to clarify treatment options, and provide information about management and prevention of CFP, for emergency room physicians, poison control information providers, other health care providers, and patients.
Resumo:
Various phosphates and their mixtures were screened for their efficiency of preventing drip loss in frozen prawns. The effectiveness of the phosphates decreased in the following order: Sodium tripolyphosphate — Sodium pyrophosphate — Sodium hexametaphosphate Sodium metaphosphate — Sodium dihydrogen phosphate; the last two being ineffective. Even though thaw drip loss was reduced by the above treatments the organoleptic quality of the thawed as well as cooked products was unsatisfactory, discoloration being the major defect. A solution of a mixture of 12% sodium tripolyphosphate and 8.6% sodium dihydrogen phosphate or 2% citric acid in water when used as dip prevented thaw drip loss, improved cooked yield and organoleptic quality without adversely affecting the biochemical characteristics. Commercial scale trials showed that the results are highly reproducible.
Resumo:
During a two years research hydrogen peroxide efficacy evaluated for Persian sturgeon, Chinese carps and common carp eggs. These series of the experiments conducted in various conditions different concentration of hydrogen peroxide include 250, 500, 750, 1,000 1,500 2,000 3,000 and 9,000 PPM used as ten and fifteen minutes baths, compared with Malachite green and natural control . In the next phase effect of Levaemisole hydrochloride as an immunostimulator which applied as 5 mg/I in twenty minutes baths from day sixth after hatch evaluated by daily mortality rate and leukocytes counts. The results shown that according fertilization percent and temperature condition hydrogen peroxide at 1,000 and 1,500 PPM concentrations is a effective antifungal agent during incubation periods of Persian sturgeon and even sometimes increasing hatching rates significantly comparing with natural controls and Malachite green. In Chinese carps although hydrogen peroxide controls water molds but it is not recommended in high temperatures because it make shortened incubation time and mold infections will decrease. Also the results shown 750 PPM concentration of hydrogen peroxide in common carp eggs controls water moulds infections and increase hatching rate significantly comparing with Malachite green and natural control. Daily mortality rates accessing of Persian sturgeon fries show that 20 minutes baths of 5mg/1 levamisole hydrochloride decreases daily mortality rate during yolk sac absorption. Nitrogenous compounds: nitrate and ammonium differ significantly between treated tanks with control. Blood leucocytes concentrations as an immune index was different significantly in treated fishes by levamisole hydrochloride comparing with controls. In Chinese carps because yolks sac absorption time is short there is not necessary to use the levamisole hydrochloride. Although treated larvae were more active than controls. As a result our suggestions is to use hydrogen peroxide in Persian sturgeon and common carp artificial propagation and also suggest the use levamisole hydrochloride for Persian sturgeon beside management method in stress and pollution condition
Resumo:
Making use of sea, as a place for dumping of wastes and other materials from human activities wasn’t forbidden before creation of the convention on the prevention of marine pollution by dumping of wastes and other matters (London Convention). Therefore, industrial countries, without any specific consideration, were dumping their wastes into the world’s seas. Many years and before the beginning of rapid development of industry, the great self- purification of seas were preventing some of discharging problems. But gradually, the increase of industrial development activities, exceeded the production of wastes and other matters, and this led to the misuse of world’s seas and oceans as a dump site. One of the most important consequences of 1972 Stockholm World Conference was to focusing world attention on threats have jeopardized marine environment balance. World countries` leaders committed in Stockholm to begin protecting the environment. Finally, this movement at marine environment section led to the creation of London Convention in the same year. London Convention was concluded for cooperating between countries at December 29, 1972 to promote effective control of all marine environment polluting resources and to prevent marine pollution by dumping wastes and other matters. Then it was opened for signature to other countries. At last, after 15 states signature, this convention was entered in to force at August 30.1975. Ratification and execution of London Convention resulted in coordinated performance of countries in marine waste management. Common actions with supports and cooperation of different international, regional, governmental and non-governmental organizations and agencies prevent marine pollution by dumping of wastes and other matters. Due to the importance of wastes in our marine and coastal areas, investigation of the performance of London Convention can identify the lack of regulations and lack of regulation supports about marine pollution prevention by dumping of wastes and other matters in Iran. Considering this issue, proper protection of seas will be achieved. London Convention has been studied here to achieve intended purposes. In first chapter, generalities about marine environment, including the importance and necessity of marine environment protection, with the focus on some internal and international resources of environmental law accompanying with marine pollution and its recourses, and finally, due to the study theme, dumping of wastes and other matters at seas with its impacts have been investigated .In the section of international measures, a brief history of marine pollution and marine environment international law with international law framework, exclusively for controlling of wastes and other material discharge at seas and oceans has been reviewed. In second chapter, obligations, amendments, and annexes of London Convention have been investigated and classified. The obligations have been categorized in to legal obligations and technical and organizational obligations. In former section, subject ,purpose, territory, exceptions, rights and duties of parties, convention amendments,… and in latter, special requirements for wastes assessment, determination of pollutants` permissible limit, site selection and type of discharge selection, design principles for marine environment quality monitoring program, and discharge license issuance mechanism have been studied. In third chapter, due to the examination of convention performance in Iran, the internal law system for marine environment conservation and its pollution has been mentioned in detail. Considering this, two issues have been compared .firstly, convention obligations with regional treaties that Iran as a party to them and secondly, Iranian internal law there of .Finally, common and different aspects of these issues have been determined. At last, recommendations and strategies for convention enforcement and conformity of its obligations with internal regulations have been presented. Furthermore, translation of convention English text has been reviewed and its protocol has been translated.
Resumo:
Several local groups have come together for this project to addresses water quality concerns in the Gabilan Watershed – also known as the Reclamation Ditch Watershed (Fig. 1.1). These are Moss Landing Marine Laboratories (MLML), the Resource Conservation District of Monterey County (RCDMC), Central Coast Watershed Studies (CCoWS), Return of the Natives (RON), Community Alliance with Family Farmers (CAFF), and Coastal Conservation and Research (CC&R). The primary goal is to reduce non-point source pollution – particularly suspended sediment, nutrients, and pesticides – and thereby improve near-shore coastal waters of Moss Landing Harbor and the Monterey Bay. (Document contains 33 pages)
Resumo:
During April 8th-10th, 2008, the Aliance for Coastal Technology (ACT) partner institutions, University of Alaska Fairbanks (UAF), Alaska SeaLife Center (ASLC), and the Oil Spill Recovery Institute (OSRI) hosted a workshop entitled: "Hydrocarbon sensors for oil spill prevention and response" in Seward, Alaska. The main focus was to bring together 29 workshop participants-representing workshop managers, scientists, and technology developers - together to discuss current and future hydrocarbon in-situ, laboratory, and remote sensors as they apply to oil spill prevention and response. [PDF contains 28 pages] Hydrocarbons and their derivatives still remain one of the most important energy sources in the world. To effectively manage these energy sources, proper protocol must be implemented to ensure prevention and responses to oil spills, as there are significant economic and environmental costs when oil spills occur. Hydrocarbon sensors provide the means to detect and monitor oil spills before, during, and after they occur. Capitalizing on the properties of oil, developers have designed in-situ, laboratory, and remote sensors that absorb or reflect the electromagnetic energy at different spectral bands. Workshop participants identified current hydrocarbon sensors (in-situ, laboratory, and remote sensors) and their overall performance. To achieve the most comprehensive understanding of oil spills, multiple sensors will be needed to gather oil spill extent, location, movement, thickness, condition, and classification. No single hydrocarbon sensor has the capability to collect all this information. Participants, therefore, suggested the development of means to combine sensor equipment to effectively and rapidly establish a spill response. As the exploration of oil continues at polar latitudes, sensor equipment must be developed to withstand harsh arctic climates, be able to detect oil under ice, and reduce the need for ground teams because ice extent is far too large of an area to cover. Participants also recognized the need for ground teams because ice extent is far too large of an area to cover. Participants also recognized the need for the U.S. to adopt a multi-agency cooperation for oil spill response, as the majority of issues surounding oil spill response focuses not on the hydrocarbon sensors but on an effective contingency plan adopted by all agencies. It is recommended that the U.S. could model contingency planning based on other nations such as Germany and Norway. Workshop participants were asked to make recommendations at the conclusion of the workshop and are summarized below without prioritization: *Outreach materials must be delivered to funding sources and Congressional delegates regarding the importance of oil spill prevention and response and the development of proper sensors to achieve effective response. *Develop protocols for training resource managers as new sensors become available. *Develop or adopt standard instrument specifications and testing protocols to assist manufacturers in further developing new sensor technology. *As oil exploration continues at polar latitudes, more research and development should be allocated to develop a suite of instruments that are applicable to oil detection under ice.
Resumo:
The production and productivity of a water body is largely dependent on its quality. One major source of water pollution is from the agrochemicals from nearby farmlands. The quality of water in the Obafemi Awolowo University Teaching and Research Farm Reservoir (Ile-Ife, Nigeria) was monitored between October, 1993 and March, 1994. Structured questionnaires were administered to obtain information on the types of agrochemicals in use on the farm. Water samples were collected fortnightly for analyses of the physico-chemical parameters and ionic content of the water. Investigation revealed that 21 agrochemicals had been in use on the farm. The physico-chemical parameters of the water showed that the water was very poor in nutrient. The high concentration of ammonium ion contents of the water shows an indication that the residues of certain agrochemicals got into the water to pollute it. Agrochemicals should be used with great caution on farmlands especially in areas close to water bodies from which man obtains fish and other proteinous foods. This paper also suggests a regular monitoring of water quality of reservoirs in order to pick the earliest signs of pollution
Resumo:
Although other research studies on areas such as the physical-chemical, nutrients and phytoplankton status of Lake Kyoga systems have been given a lot of attention (e.g. Mungoma 1988 and NaFIRRI 2006), efforts to determine the pollution status of this system, especially by heavy metals as one of the worldwide emerging environmental problems, is still limited. Many trace metals are regarded as serious pollutants of aquatic ecosystems because of their persistence, toxicity and ability to be incorporated into food chains (Mwamburi J., and Nathan O.F., 1997). Given the rapid human population growth and the associated economic activities both within the rural and urban areas in Uganda, such fish production systems are becoming very prone to various kinds of pollution including that by heavy metals. Anthropogenic factors such deforestation, use of chemicals and dumping of metallic products, spillages of fuels from outboard engines and many others and or natural processes involving atmospheric deposition by wind or rain, surface run-offs and streams flows from the catchment introduces heavy metals into the lake environment,.
Resumo:
In order to record the effects of thyroxine and cortisol (individual/combined) on hatching, post-embryonic growth and survival of larvae of Heteropneustes fossilis, newly fertilized eggs were given bath immersion treatments of L-thyroxine (T sub(4); 0.05 mg/l), cortisol (0.50 mg/l) and T sub(4)+ cortisol (0.05 mg/l+0.50 mg/l) for 15 days. Hatching of eggs, growth and survival of the larvae improved significantly (P<0.001) in the hormone treated groups as compared to those of control. The frequency of deformities was reduced in the combined hormone treatment group. The present observations suggest that the advanced digestive function probably induced by T sub(4)+cortisol treatment might have resulted in improvement in food utilization during the critical phases of first feeding and promoted vital developmental processes resulting in uniform growth, decreased mortality, better survival and transformation of larvae to juveniles. This combined hormone therapy appears to have practical utility in fish hatchery practice for better success in larval rearing.