3 resultados para 6-59
em Aquatic Commons
Resumo:
The study was carried out to assess the effects of stocking density on growth and production of GIFT for a period of 100 days. Three stocking densities were used 150, 200 and 250 fish/decimal; designated as treatment T1, T2 and T3 respectively having two replicates for each. Commercial pellet feeds were fed at the rate of 30% body weight up to first 10 days and then gradually it was readjusted to 22%, 18%, 15%, 12%, 10%, 8%, 6%, 5% and 4% respectively after every 10 days interval. The result showed that the fish in the treatment T1 stocked with the lowest stocking density (150 fish/dec) resulted in best individual weight gain (148.65g) followed by those in treatment T2 and T3 respectively. The specific growth rates (SGR) at every 10 days were ranged from 6.59 to 1.11 in different treatments during the experimental period. The food conversion ratio (FCR) values ranged between 1.82 to 2.03 with treatment T1 showing the lowest FCR. The survival rate ranged between 84 to 92%. Treatment T1 and treatment T2 showed significantly higher survival than Treatment T3. The fish production rate in treatment T1, T2 and T3 were 18.58, 23.87 and 26.78 kg/decimal respectively.
Resumo:
The water and bottom sediments of Lake Victoria (Kenya) were analysed for A1, Fe, Mn, Zn, Pb, Cu, Cr and Cd. The total metal concentrations were determined and their mean variations and distributions discussed. The bottom lake waters showed higher concentration levels than the surface waters. The range of values (in mg/l) in the bottom and surface lake waters were as follows: Surface Waters: A1(0.08 - 3.98), Fe(0.09 - 4.01), Mn(0.02 - 0.10). Zn(0.01 -0.07), Pb(0.001- 0.007), Cu(not detected - 0.006), Cr(not detected - 0.004). Bottom Waters: A1(0.1 0 - 6.59), Fe(0.23 - 9.64), Mn(0.04 - 0.39), Zn(0.01- 0.08), Pb(0.002 - 0.009), Cu(not detected - 0.03). Cr(not detected -0.002). River mouths and shallow areas in the lake showed higher total metal concentrations than offshore deeper areas. Apart from natural metal levels, varied urban activities and wastes greatly contribute to the lake metal pollution as shown by high Pb and Zn levels in sediments, around Kisumu and Homa Bay areas. Other comparatively high values and variations could be attributed to the varied geological characteristics of the lake and its sediments. Compared to the established W.H.O (1984) drinking water standards manganese, aluminium and iron levels were above these limits whereas zinc, lead, chromium, copper and cadmium were below.