14 resultados para 54-419
em Aquatic Commons
Resumo:
One of the causes of lower artesian pressure, water waste and aquifer contamination is the misuse and insufficient care of artesian wells. In 1953, Senate Bill No. 57, entitled "An Act to Protect and Control the Artesian Waters of the State" (see Appendix) became a law. This law was passed through the efforts exerted by leading members of the Senate and the House of Representatives, who understood the need for a wise and controlled expenditure of our most valuable natural resource. The State Geologist and his authorized representatives were designated by this law to enforce this conservation measure; however, no financial provision was included for the 1953-55 biennium. The proposed program of the Florida Geological Survey for this biennium did not include the funds nor provide any full-time personnel for the enforcement of this statute. As a result, little actual work was accomplished during these two years, although much time was given to planning and discussion of the problem. Realizing that this program could provide additional basic data needed in the analysis of the water-supply problem, the State Geologist sought and was granted by the 1955 Legislature adequate funds with which to activate the first phase of the enforcement of Florida Statute No. 370.051-054. Enumerated below is a summary of the progress made on this investigation as outlined previously: 1. Data have been collected on 967 wildly flowing wells in 22 counties. 2. Chloride determinations have been run on 850 of the 967 wells. 3. Of the 967 wells, 554 have chlorides in excess of the 250 ppm, the upper limit assigned by the State Board of Health for public consumption. 4. Water escapes at the rate of 37, 762 gallons per minute from these 967 wells. This amounts to 54, 377, 280 gallons per day. The investigation is incomplete at this time; therefore, no final conclusions can be reached. However, from data already collected, the following recommendations are proposed: 1. That the present inventory of wildly flowing wells be completed for the entire State. 2. That the current inventory of wildly flowing wells be expanded at the conclusion of the present inventory to include all flowing wells. 3. That a complete statewide inventory program be established and conducted in cooperation with the Ground Water Branchof the U.S. Geological Survey. 4. That the enforcement functions as set down in Sections 370.051/.054, Florida Statutes, be separated from the program to collect water-resource data and that these functions be given to the Water Resources Department, if such is created (to be recommended by the Water Resources Study Commission in a water policy law presented to the 1957 Legislature). 5. That the research phase (well inventory) of the program remain under the direction of the Florida Geological Survey. (PDF contains 204 pages.)
Resumo:
(PDF contains 2 pages.)
Resumo:
(PDF contains 1 page.)
Resumo:
(PDF contains 2 pages.)
Resumo:
(PDF contains 4 pages.)
Resumo:
(PDF contains 56 pages)
Resumo:
This partial translation of a larger paper provides taxonomic descriptions of 5 fungal zoospores species: Olpidium vampyrellae, 0. pseudosporearum, 0. leptophrydis, Rhizophidium leptophrydis and Chytridium lateoperculatum.
Resumo:
This partial translation of the original paper provides morphological observations on the fungus Spirospora paradoxa. Illustrations are included here.
Resumo:
Cover. Contents.
Resumo:
Cover. Contents.
Resumo:
Teeth of 71 estuarine dolphins (Sotalia guianensis) incidentally caught on the coast of Paraná State, southern Brazil, were used to estimate age. The oldest male and female dolphins were 29 and 30 years, respectively. The mean distance from the neonatal line to the end of the first growth layer group (GLG) was 622.4 ±19.1 μm (n=48). One or two accessory layers were observed between the neonatal line and the end of the first GLG. One of the accessory layers, which was not always present, was located at a mean of 248.9 ±32.6 μm (n=25) from the neonatal line, and its interpretation remains uncertain.The other layer, located at a mean of 419.6 ±44.6 μm (n=54) from the neonatal line, was always present and was first observed between 6.7 and 10.3 months of age. This accessory layer could be a record of weaning in this dolphin. Although no differences in age estimates were observed between teeth sectioned in the anterior-posterior and buccal-lingual planes, we recommend sectioning the teeth in the buccal-lingual plane in order to obtain on-center sections more easily. We also recommend not using teeth from the most anterior part of the mandibles for age estimation. The number of GLGs counted in those teeth was 50% less than the number of GLGs counted in the teeth from the median part of the mandible of the same animal. Although no significant difference (P>0.05) was found between the total lengths of adult male and female estuarine dolphins, we observed that males exhibited a second growth spurt around five years of age. This growth spurt would require that separate growth curves be calculated for the sexes. The asymptotic length (TL∞), k, and t0 obtained by the von Bertalanffy growth model were 177.3 cm, 0.66, and –1.23, respectively, for females and 159.6 cm, 2.02, and –0.38, respectively, for males up to five years, and 186.4 cm, 0.53 and –1.40, respectively, for males older than five years. The total weight (TW)/total length (TL) equations obtained for male and female estuarine dolphins were TW = 3.156 × 10−6 × TL 3.2836 (r=0.96), and TW = 8.974 × 10−5 × TL 2.6182 (r=0.95), respectively.