10 resultados para 437

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four species of Characiformes and five species of Siluriformes are recorded from ten new argentine localities. New distributional data are discussed. Relevant morphological measurements and some comments are added.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Callionymidae, along with the Draconettidae and Gobiesocidae, previously were placed in the order Gobiesociformes (Allen, 1984). Recently, Nelson (1994) placed the Callionymidae and Draconettidae in the percifonn suborder Callionymoidei. The family is represented by three species in the western central North Atlantic Ocean, Diplogrammus pauciradiatus, Paradiplogrammus bairdi and Foetorepus agassizi (Davis, 1966; Robins and Ray, 1986). A detailed review ofthe family including early life history infonnation is given by Houde (1984) and Watson (1996). (PDF contains 11 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Limitation to an aqueous habitat is the most fundamental physiological constraint imposed upon fish, phrases such as 'like a fish of water', convey our acceptance of the general unsuitability of fish for terrestrial existence. The constraints that restrict fish to an aquatic habitat relate to respiration, acid-base regulation, nitrogenous excretion, water balance and ionic regulation. A fish not adapted for an amphibious lifestyle when removed from water, becomes hypoxic and hypercapnic and soon succumbs to respiratory acidosis because the problem of excretion of H super(+) and C0 sub(2) are more immediate than lack of oxygen. This happen because fish gills collapse in air, while the ventilator arrangements that moves an incompressible medium (water) oven them become ineffective

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demersal fishes hauled up from depth experience rapid decompression. In physoclists, this can cause overexpansion of the swim bladder and resultant injuries to multiple organs (barotrauma), including severe exophthalmia (“pop-eye”). Before release, fishes can also be subjected to asphyxia and exposure to direct sunlight. Little is known, however, about possible sensory deficits resulting from the events accompanying capture. To address this issue, electroretinography was used to measure the changes in retinal light sensitivity, flicker fusion frequency, and spectral sensitivity in black rockfish (Sebastes melanops) subjected to rapid decompression (from 4 atmospheres absolute [ATA] to 1 ATA) and Pacific halibut (Hippoglossus stenolepis) exposed to 15 minutes of simulated sunlight. Rapid decompression had no measurable influence on retinal function in black rockfish. In contrast, exposure to bright light significantly reduced retinal light sensitivity of Pacific halibut, predominately by affecting the photopigment which absorbs the green wavelengths of light (≈520–580 nm) most strongly. This detriment is likely to have severe consequences for postrelease foraging success in green-wavelength-dominated coastal waters. The visual system of Pacific halibut has characteristics typical of species adapted to low light environments, and these characteristics may underlie their vulnerability to injury from exposure to bright light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vetter (1988) noted that her review of the estimation of the instantaneous natural mortality rate (M) was initiated by a discussion among colleagues that identified M as the single most impor ta nt but least well-estimated parameter in fishery models. A lthough much has been accomplished in the inter vening years, M remains one of the most difficult parameters to estimate in fishery stock assessments. A number of novel approaches using tagging and telemetry data provide promise for making reliable direct estimates of M for a given stock (Hearn et al., 1998 ; Frusher and Hoenig, 2001; Hightower et al., 2001; Latour et al., 2003; Pollock et al., 2004). However, such methods are often impracticable and fishery scientists must approximate M by using estimates made for other stocks of the same or similar species or by predicting M from features of the species’ life history (Beverton and Holt, 1959; Beverton, 1963; Alverson and Carney, 1975; Pauly, 1980; Hoenig, 1983; Peterson and Wroblewski, 1984; Roff, 1984; Gunderson and Dygert, 1988; Chen and Watanabe, 1989; Charnov, 1993; Jensen, 1996; Lorenzen, 1996).