10 resultados para 344.04194
em Aquatic Commons
Resumo:
Mid-frequency active (MFA) sonar emits pulses of sound from an underwater transmitter to help determine the size, distance, and speed of objects. The sound waves bounce off objects and reflect back to underwater acoustic receivers as an echo. MFA sonar has been used since World War II, and the Navy indicates it is the only reliable way to track submarines, especially more recently designed submarines that operate more quietly, making them more difficult to detect. Scientists have asserted that sonar may harm certain marine mammals under certain conditions, especially beaked whales. Depending on the exposure, they believe that sonar may damage the ears of the mammals, causing hemorrhaging and/or disorientation. The Navy agrees that the sonar may harm some marine mammals, but says it has taken protective measures so that animals are not harmed. MFA training must comply with a variety of environmental laws, unless an exemption is granted by the appropriate authority. Marine mammals are protected under the Marine Mammal Protection Act (MMPA) and some under the Endangered Species Act (ESA). The training program must also comply with the National Environmental Policy Act (NEPA), and in some cases the Coastal Zone Management Act (CZMA). Each of these laws provides some exemption for certain federal actions. The Navy has invoked all of the exemptions to continue its sonar training exercises. Litigation challenging the MFA training off the coast of Southern California ended with a November 2008 U.S. Supreme Court decision. The Supreme Court said that the lower court had improperly favored the possibility of injuring marine animals over the importance of military readiness. The Supreme Court’s ruling allowed the training to continue without the limitations imposed on it by other courts. (pdf contains 20pp.)
Resumo:
Estimating rare events from zero-heavy data (data with many zero values) is a common challenge in fisheries science and ecology. For example, loggerhead sea turtles (Caretta caretta) and leatherback sea turtles (Dermochelys coriacea) account for less than 1% of total catch in the U.S. Atlantic pelagic longline fishery. Nevertheless, the Southeast Fisheries Science Center (SEFSC) of the National Marine Fisheries Service (NMFS) is charged with assessing the effect of this fishery on these federally protected species. Annual estimates of loggerhead and leatherback bycatch in a fishery can affect fishery management and species conservation decisions. However, current estimates have wide confidence intervals, and their accuracy is unknown. We evaluate 3 estimation methods, each at 2 spatiotemporal scales, in simulations of 5 spatial scenarios representing incidental capture of sea turtles by the U.S. Atlantic pelagic longline fishery. The delta-log normal method of estimating bycatch for calendar quarter and fishing area strata was the least biased estimation method in the spatial scenarios believed to be most realistic. This result supports the current estimation procedure used by the SEFSC.
Resumo:
The narrow-barred Spanish mackerel (Scomberomorus commerson) is widespread throughout the Indo-West Pacific region. This study describes the reproductive biology of S. commerson along the west coast of Australia, where it is targeted for food consumption and sports fishing. Development of testes occurred at a smaller body size than for ovaries, and more than 90% of males were sexually mature by the minimum legal length of 900 mm TL compared to 50% of females. Females dominated overall catches although sex ratios within daily catches vary considerably and females were rarely caught when spaw n ing. Scomberomorus commerson are seasonally abundant in coastal waters and most of the commercial catch is taken prior to the reproductive season. Spawning occurs between about August and November in the Kimberley region and between October and January in the Pilbara region. No spawning activity was recorded in the more southerly West Coast region, and only in the north Kimberley region were large numbers of fish with spawning gonads collected. Catches dropped to a minimum when spawning began in the Pilbara region, when fish became less abundant in inshore waters and inclement weather conditions limited fishing on still productive offshore reefs. Final maturation and ovulation of oocytes took place within a 24-hour period, and females spawned in the afternoon-evening every three days. A third of these spawning females released batches of eggs on consecutive days. Relationships between length, weight, and batch fecundity are presented.
Resumo:
Undaria pinnatifida was registered in Ría Deseado (47º45´S, 65º55´W _ southern Patagonia) by the first time in spring 2005, colonizing the intertidal and shallow subtidal. A seasonal survey in 2006 showed that U. pinnatifida was established in a sheltered zone inside the estuary, along a coastal fringe of 8 km between Punta Cascajo and Cañadón del Puerto. This continuous distribution was only interrupted in the mouth of canyons that flow into Ría Deseado, where the bottom is conformed by mud and sand. The sporophytes were mainly found colonizing the rocky bottom in the lower intertidal, bordering the Macrocystis pyrifera population. The highest density and biomass of sporophytes (12.13 ind. m-2; 254.60 g m-2) were registered during spring, when the population was mainly conformed by individuals of medium sizes. The lowest density and biomass (0.33 ind. m-2; 5.69 g m-2) were registered in autumn. Juvenile sporophytes recruited throughout the year, but presented the highest percentage in the population during autumn and winter. First mature sporophytes appeared in spring and attained their maximum size in summer. After this, the sprophytes decayed and disappeared. Environmental factors such as rocky bottoms availability and water transparency may be the main factors determining the sporophytes distribution in Ría Deseado. The field experiment point out that M. pyrifera population is an important factor controlling the dispersion of U. pinnatifida towards the subtidal. SPANISH: Undaria pinnatifida fue registrada en la Ría Deseado (47º45´ S, 65º55´ W _ Patagonia austral) durante la primavera de 2005, colonizando el intermareal y submareal somero. Los relevamientos estacionales realizados durante el 2006, revelaron que U. pinnatifida se encontró establecida en una zona protegida en el interior de la ría, ocupando una franja costera de aproximadamente 8 km de largo entre Punta Cascajo y el Cañadón del Puerto. Esta distribución casi continua sólo presentó algunas interrupciones en la boca de los cañadones que desembocan en la ría, donde el fondo predominante es de tipo areno-fangoso. Los esporofitos de U. pinnatifida ocuparon preferentemente el fondo rocoso del intermareal inferior, limitando con la población de Macrocystis pyrifera. La densidad y biomasa más altas de esporofitos (12,13 ind. m-2; 254,60 g m-2) fueron registradas en primavera, cuando la población se encontró compuesta principalmente por individuos de tallas intermedias. La densidad y biomasa más bajas (0,33 ind. m-2; 5,69 g m-2) fueron registradas durante el otoño. Los esporofitos juveniles se reclutaron a lo largo de todo el año, pero alcanzaron su mayor proporción en la población durante el otoño y el invierno. Los esporofitos reproductivamente maduros aparecieron durante la primavera y alcanzaron su talla máxima durante el verano, luego del cual comenzaron a deteriorarse y a desaparecer. Factores como la disponibilidad de fondos rocosos y la transparencia de las aguas podrían actuar como los principales factores determinantes de su distribución en la ría. El experimento de campo realizado revela que los bosques de M. pyrifera actúan también como un importante factor de control, limitando la dispersión de U. pinnatifida hacia el submareal.
Resumo:
The food sources of the leptocephali of the teleostean superorder Elopomorpha have been controversial, yet observations on the leptocephali of the worm eels, Myrophis spp. (family Ophichthidae) collected in the northern Gulf of Mexico indicate active, not passive, feeding. Leptocephali had protists in their alimentary canals. Estimates of the physiological energetics of worm eels indicate that large aloricate protozoa including ciliates could provide substantial energy to these leptocephali toward the end of the premetamorphic and metamorphic stages, given the low energy requirements of metamorphosing leptocephali. Global ocean warming will likely force a shift in oceanic food webs; a shift away from large protozoa toward smaller protists is possible. Such a disruption of the oceanic food webs could further compromise the survival of leptocephali.
Resumo:
Hilsa shad, Tenuolosa ilisha, belongs to Clupeidae family and Alsinae subfamily is an euryhaline pelagic and anadromous species living in marine and freshwater waters. Regarding to study the biological characteristics of this species, this study was carried out in the Northern Persian Gulf within Bushehr province waters during years 2006-7. A total of 344 specimens were collected and transported to the laboratory for further different biological measurements consist of: reproduction (GSI, fecundity, maturity stages), feeding (stomach contents, food preference ...), aging; 58 morphometric and ٧ meristic measurements. The results indicate that minimum, maximum and mean body weight are 203, 953 and 481.35±147.64 g, respectively and this values for total length are 26.5, 45.1 and 35.99±3.98 cm. For food regimes, the most abundant phytoplankton foods belong to Bacillariophyta (83.74٪) and zooplanktons of Arthropoda (51٪). The mean RLG was measured about 1.53±0.22 and the mean feeding intensity was about 51.79±38.13. Also, the aging of studied fishes showed that they have 2 to 4 years and most of the samples had 2+ years. The reproduction studies showed that Indian shad is a batch spawner species. The average gonadosomatic index (GSI) is 1.64±1.382 and the main spawning season was determined for April-May.