13 resultados para 324-U1347A
em Aquatic Commons
Resumo:
Taxonomic observations are given on Dangeardia sporapiculata n. sp. Furthermore the term 'apiculus' and the species limitation of some chytrids are being discussed. It is concluded that the newly described species Dangeardia sporapiculata does not fit satisfactorily into the present system of phlyctidiacee, because their characteristics do not agree exactly with any genus.
Resumo:
This study analyzed species richness, distribution, and sighting frequency of selected reef fishes to describe species assemblage composition, abundance, and spatial distribution patterns among sites and regions (Upper Keys, Middle Keys, Lower Keys, and Dry Tortugas) within the Florida Keys National Marine Sanctuary (FKNMS) barrier reef ecosystem. Data were obtained from the Reef Environmental Education Foundation (REEF) Fish Survey Project, a volunteer fish-monitoring program. A total of 4,324 visual fish surveys conducted at 112 sites throughout the FKNMS were used in these analyses. The data set contained sighting information on 341 fish species comprising 68 families. Species richness was generally highest in the Upper Keys sites (maximum was 220 species at Molasses Reef) and lowest in the Dry Tortugas sites. Encounter rates differed among regions, with the Dry Tortugas having the highest rate, potentially a result of differences in the evenness in fishes and the lower diversity of habitat types in the Dry Tortugas region. Geographic coverage maps were developed for 29 frequently observed species. Fourteen of these species showed significant regional variation in mean sighting frequency (%SF). Six species had significantly lower mean %SF and eight species had significantly higher mean %SF in the Dry Tortugas compared with other regions. Hierarchical clustering based on species composition (presence-absence) and species % SF revealed interesting patterns of similarities among sites that varied across spatial scales. Results presented here indicate that phenomena affecting reef fish composition in the FKNMS operate at multiple spatial scales, including a biogeographic scale that defines the character of the region as a whole, a reef scale (~50-100 km) that include meso-scale physical oceanographic processes and regional variation in reef structure and associated reef habitats, and a local scale that includes level of protection, cross-shelf location and a suite of physical characteristics of a given reef. It is likely that at both regional and local scales, species habitat requirements strongly influence the patterns revealed in this study, and are particularly limiting for species that are less frequently observed in the Dry Tortugas. The results of this report serve as a benchmark for the current status of the reef fishes in the FKNMS. In addition, these data provide the basis for analyses on reserve effects and the biogeographic coupling of benthic habitats and fish assemblages that are currently underway. (PDF contains 61 pages.)
Resumo:
Freshwater ecosystems are highly dynamic and change on time-scales that range from a few hours to several months. The development of models that simulate these processes is often hampered by the lack of sufficient data to parameterize the processes and validate the models. In this article, I review some of the challenges posed by this lack of information and suggest ways in which they can be met by using automatic monitoring systems. One of these studies is the project tempQsim (EVK1-CT2002-00112) funded by the European Commission. In this project, detailed field and model analyses have been performed at eight catchment study sites in south and south-east Europe. A number of perceptual models for the study sites have been established, and results are being used to improve selected catchment models and provide a more adequate description of pollution dynamics. Results from the extensive field studies and model tests are now being used to derive recommendations for more tailored monitoring concepts in highly dynamic, but ‘data scarce’ environments, such as are frequently found in Mediterranean river basins. The author includes implications of the EU Water Framework Directive on monitoring methods.
Resumo:
Demographic parameters were derived from sectioned otoliths of John’s Snapper (Lutjanus johnii) from 4 regions across 9° of latitude and 23° of longitude in northern Australia. Latitudinal variation in size and growth rates of this species greatly exceeded longitudinal variation. Populations of John’s Snapper farthest from the equator had the largest body sizes, in line with James’s rule, and the fastest growth rates, contrary to the temperature-size rule for ectotherms. A maximum age of 28.6 years, nearly 3 times previous estimates, was recorded and the largest individual was 990 mm in fork length. Females grew to a larger mean asymptotic fork length (L∞) than did males, a finding consistent with functional gonochorism. Otolith weight at age and gonad weight at length followed the same latitudinal trends seen in length at age. Length at maturity was ~72–87% of L∞ and varied by ~23% across the full latitudinal gradient, but age at first maturity was consistently in the range of 6–10 years, indicating that basic growth trajectories were similar across vastly different environments. We discuss both the need for complementary reproductive data in age-based studies and the insights gained from experiments where the concept of oxygen- and capacity-limited thermal tolerance is applied to explain the mechanistic causes of James’s rule in tropical fish species.
Resumo:
In August and September of 1997 and 1998, we used SCUBA techniques to surgically implant Vemco V16 series acoustic transmitters in 6 greenspotted rockfish (Sebastes chlorostictus) and 16 bocaccio (S. paucispinis) on the flank of Soquel Canyon in Monterey Bay, California. Fish were captured at depths of 100–200 m and reeled up to a depth of approximately 20 m, where a team of SCUBA divers anesthetized and surgically implanted acoustic transmitters in them. Tagged fish were released on the seafloor at the location of catch. An array of recording receivers on the seafloor enabled the tracking of horizontal and vertical fish movements for a three-month period. Greenspotted rockfish tagged in 1997 exhibited almost no vertical movement and showed limited horizontal movement. Two of these tagged fish spent more than 90% of the time in a 0.58-km2 area. Three other tagged greenspotted rockfish spent more than 60% of the time in a 1.6-km2 area but displayed frequent horizontal movements of at least 3 km. Bocaccio exhibited somewhat greater movements. Of the 16 bocaccio tagged in 1998, 10 spent less than 10% of the time in the approximately 12-km2 study area. One fish stayed in the study area for about 50% of the study time. Signals from the remaining 5 fish were recorded in the study area the entire time. Bocaccio frequently moved vertically 10–20 m and occasionally displayed vertical movements of 100 m or greater.