16 resultados para 3ª classe e 4ª classe
em Aquatic Commons
Resumo:
This publication gives the results of the bottom trawlings made during the cruises Togo 3 and logo 4 by the oceanographic research vessel "Andre NIZERY" on the continental shelf of Togo during the estimation program of halieutic resources. The report includes: 1 - The report of the cruises Togo 3 and Togo 4 2 - Some information on the presentation of the results 3 - The trawl recording cards for the 2 cruises 4 - The length frequency distributions of the measured samples.
Resumo:
1. INTRODUCTION 1.1 Working Group History 2. SPECIES COMPOSITION AND DISTRIBUTION PATTERNS RELATED TO WATER MASSES 2.1 Mesopelagic Fishes 2.1.1 Dominant families 2.1.2 Large-scale feeding and/or spawning migration or expatriation? 2.1.3 Definition of water masses 2.1.4 Species composition 2.2 Crustacean Micronekton 2.2.1 Euphausiids 2.2.2 Mysids and decapods 2.3 Cephalopod Micronekton 2.3.1 Family Enoploteuthidae 2.3.2 Family Gonatidae 2.3.3 Family Onychoteuthidae 2.3.4 Family Pyroteuthidae 2.3.5 Other cephalopods 3. VERTICAL DISTRIBUTION PATTERNS 3.1 Mesopelagic Fishes 3.1.1 Significance of diel vertical migration 3.1.2 DVM patterns 3.1.3 Ontogenetic change in DVM patterns 3.2 Crustacean Micronekton 3.3 Cephalopod Micronekton 4. BIOMASS PATTERNS 4.1 Micronektonic Fish 5. LIFE HISTORY 5.1 Fish Micronekton 5.1.1 Age and growth 5.1.2 Production 5.1.3 Reproduction 5.1.4 Mortality 5.2 Crustacean Micronekton 5.2.1 Age and growth 5.2.2 Production 5.2.3 Reproduction and early life history 5.2.4 Mortality 5.3 Cephalopod Micronekton 5.3.1 Age and growth 5.3.2 Production 5.3.3 Reproduction and early life history 5.3.4 Mortality 6. ECOLOGICAL RELATIONS 6.1 Feeding Habits 6.1.1 Fish micronekton 6.1.2 Crustacean micronekton 6.1.3 Cephalopod micronekton 6.2 Estimating the Impact of Micronekton Predation on Zooplankton 6.2.1 Predation by micronektonic fish 6.3 Predators 6.3.1 Cephalopods 6.3.2 Elasmobranchs 6.3.3 Osteichthyes 6.3.4 Seabirds 6.3.5 Pinnipeds 6.3.6 Cetaceans 6.3.7 Human consumption 6.4 Predation Rate 6.5 Ecosystem Perspectives 6.6 Interactions between Micronekton and Shallow Topographies 7. SAMPLING CONSIDERATIONS 7.1 Net Trawling 7.1.1 Sampling gears 7.1.2 Sampling of surface migratory myctophids 7.1.3 Commercial-sized trawl sampling 7.1.4 Sampling of euphausiids and pelagic decapods 7.2 Acoustic Sampling 7.2.1 Acoustic theory and usage 7.3 Video Observations (Submersible and ROV) 8. SUMMARY OF PRESENT STATE OF KNOWLEDGE 8.1 Fish Micronekton 8.2 Crustacean Micronekton 8.3 Cephalopod Micronekton 9. RECOMMENDATIONS 10. REFERENCES 11. APPENDICES (122 page document)
Resumo:
EXECUTIVE SUMMARY 1. DECADAL-SCALE CLIMATE EVENTS 1.1 Introduction 1.2 Basin-scale Patterns 1.3 Long Time Series in the North Pacific 1.4 Decadal Climate Variability in Ecological Regions of the North Pacific 1.5 Mechanisms 1.6 References 2. COHERENT REGIONAL RESPONSES 2.1 Introduction 2.2 Central North Pacific (CNP) 2.3 California Current System (CCS) 2.4 Gulf of Alaska (GOA) 2.5 Bering Sea and Aleutian Islands 2.6 Western North Pacific (WNP) 2.7 Coherence in Regional Responses to the 1998 Regime Shift 2.8 Climate Indicators for Detecting Regime Shifts 2.9 References 3. IMPLICATIONS FOR THE MANAGEMENT OF MARINE RESOURCES 3.1 Introduction 3.2 Response Time of Biota to Regime Shifts 3.3 Response Time of Management to Regime Shifts 3.4 Provision of Stock Assessment Advice 3.5 Decision Rules 3.6 References 4. SUGGESTED LITERATURE 4.1 Climate Regimes 4.2 Impacts on Lower Trophic Levels 4.3 Impacts on Fish and Higher Trophic Levels 4.4 Impacts on Ecosystems and Possible Mechanisms 4.5 Regimes and Fisheries Management APPENDIX 1: RECENT ECOSYSTEM CHANGES IN THE CENTRAL NORTH PACIFIC A1.1 Introduction A1.2 Physical Oceanography A1.3 Lower Trophic Levels A1.4 Invertebrates A1.5 Fishes A1.6 References APPENDIX 2: RECENT ECOSYSTEM CHANGES IN THE CALIFORNIA CURRENT SYSTEM A2.1 Introduction A2.2 Physical Oceanography A2.3 Lower Trophic Levels A2.4 Invertebrates A2.5 Fishes A2.6 References APPENDIX 3: RECENT ECOSYSTEM CHANGES IN THE GULF OF ALASKA A3.1 Introduction A3.2 Physical Oceanography A3.3 Lower Trophic Levels A3.4 Invertebrates A3.5 Fishes A3.6 Higher Trophic Levels A3.7 Coherence in Gulf of Alaska Fish A3.8 Combined Standardized Indices of Recruitment and Survival Rate A3.9 References APPENDIX 4: RECENT ECOSYSTEM CHANGES IN THE BERING SEA AND ALEUTIAN ISLANDS A4.1 Introduction A4.2 Bering Sea Environmental Variables and Physical Oceanography A4.3 Bering Sea Lower Trophic Levels A4.4 Bering Sea Invertebrates A4.5 Bering Sea Fishes A4.6 Bering Sea Higher Trophic Levels A4.7 Coherence in Bering Sea Fish Responses A4.8 Combined Standardized Indices of Bering Fish Recruitment and Survival Rate A4.9 Aleutian Islands A4.10 References APPENDIX 5: RECENT ECOSYSTEM CHANGES IN THE WESTERN NORTH PACIFIC A5.1 Introduction A5.2 Sea of Okhotsk A5.3 Tsushima Current Region and Kuroshio/Oyashio Current Region A5.4 Bohai Sea, Yellow Sea, and East China Sea A5.5 References (168 page document)
Resumo:
(Document pdf contains 193 pages) Executive Summary (pdf, < 0.1 Mb) 1. Introduction (pdf, 0.2 Mb) 1.1 Data sharing, international boundaries and large marine ecosystems 2. Objectives (pdf, 0.3 Mb) 3. Background (pdf, < 0.1 Mb) 3.1 North Pacific Ecosystem Metadatabase 3.2 First federation effort: NPEM and the Korea Oceanographic Data Center 3.2 Continuing effort: Adding Japan’s Marine Information Research Center 4. Metadata Standards (pdf, < 0.1 Mb) 4.1 Directory Interchange Format 4.2 Ecological Metadata Language 4.3 Dublin Core 4.3.1. Elements of DC 4.4 Federal Geographic Data Committee 4.5 The ISO 19115 Metadata Standard 4.6 Metadata stylesheets 4.7 Crosswalks 4.8 Tools for creating metadata 5. Communication Protocols (pdf, < 0.1 Mb) 5.1 Z39.50 5.1.1. What does Z39.50 do? 5.1.2. Isite 6. Clearinghouses (pdf, < 0.1 Mb) 7. Methodology (pdf, 0.2 Mb) 7.1 FGDC metadata 7.1.1. Main sections 7.1.2. Supporting sections 7.1.3. Metadata validation 7.2 Getting a copy of Isite 7.3 NSDI Clearinghouse 8. Server Configuration and Technical Issues (pdf, 0.4 Mb) 8.1 Hardware recommendations 8.2 Operating system – Red Hat Linux Fedora 8.3 Web services – Apache HTTP Server version 2.2.3 8.4 Create and validate FGDC-compliant Metadata in XML format 8.5 Obtaining, installing and configuring Isite for UNIX/Linux 8.5.1. Download the appropriate Isite software 8.5.2. Untar the file 8.5.3. Name your database 8.5.4. The zserver.ini file 8.5.5. The sapi.ini file 8.5.6. Indexing metadata 8.5.7. Start the Clearinghouse Server process 8.5.8. Testing the zserver installation 8.6 Registering with NSDI Clearinghouse 8.7 Security issues 9. Search Tutorial and Examples (pdf, 1 Mb) 9.1 Legacy NSDI Clearinghouse search interface 9.2 New GeoNetwork search interface 10. Challenges (pdf, < 0.1 Mb) 11. Emerging Standards (pdf, < 0.1 Mb) 12. Future Activity (pdf, < 0.1 Mb) 13. Acknowledgments (pdf, < 0.1 Mb) 14. References (pdf, < 0.1 Mb) 15. Acronyms (pdf, < 0.1 Mb) 16. Appendices 16.1. KODC-NPEM meeting agendas and minutes (pdf, < 0.1 Mb) 16.1.1. Seattle meeting agenda, August 22–23, 2005 16.1.2. Seattle meeting minutes, August 22–23, 2005 16.1.3. Busan meeting agenda, October 10–11, 2005 16.1.4. Busan meeting minutes, October 10–11, 2005 16.2. MIRC-NPEM meeting agendas and minutes (pdf, < 0.1 Mb) 16.2.1. Seattle Meeting agenda, August 14-15, 2006 16.2.2. Seattle meeting minutes, August 14–15, 2006 16.2.3. Tokyo meeting agenda, October 19–20, 2006 16.2.4. Tokyo, meeting minutes, October 19–20, 2006 16.3. XML stylesheet conversion crosswalks (pdf, < 0.1 Mb) 16.3.1. FGDCI to DIF stylesheet converter 16.3.2. DIF to FGDCI stylesheet converter 16.3.3. String-modified stylesheet 16.4. FGDC Metadata Standard (pdf, 0.1 Mb) 16.4.1. Overall structure 16.4.2. Section 1: Identification information 16.4.3. Section 2: Data quality information 16.4.4. Section 3: Spatial data organization information 16.4.5. Section 4: Spatial reference information 16.4.6. Section 5: Entity and attribute information 16.4.7. Section 6: Distribution information 16.4.8. Section 7: Metadata reference information 16.4.9. Sections 8, 9 and 10: Citation information, time period information, and contact information 16.5. Images of the Isite server directory structure and the files contained in each subdirectory after Isite installation (pdf, 0.2 Mb) 16.6 Listing of NPEM’s Isite configuration files (pdf, < 0.1 Mb) 16.6.1. zserver.ini 16.6.2. sapi.ini 16.7 Java program to extract records from the NPEM metadatabase and write one XML file for each record (pdf, < 0.1 Mb) 16.8 Java program to execute the metadata extraction program (pdf, < 0.1 Mb) A1 Addendum 1: Instructions for Isite for Windows (pdf, 0.6 Mb) A2 Addendum 2: Instructions for Isite for Windows ADHOST (pdf, 0.3 Mb)
Resumo:
Whole-lake techniques are increasingly being used to selectively remove exotic plants, including Eurasian watermilfoil ( Myriophyllum spicatum L.). Fluridone (1-methyl-3-phenyl- 5-[3-(trifluoromethyl)phenyl]-4(1 H )-pyridinone), a systemic whole-lake herbicide, is selective for Eurasian watermilfoil within a narrow low concentration range. Because fluridone applications have the potential for large effects on plant assemblages and lake food webs, they should be evaluated at the whole-lake scale. We examined effects of low-dose (5 to 8 ppb) fluridone applications by comparing submersed plant assemblages, water quality and largemouth bass ( Micropterus salmoides ) growth rates and diets between three reference lakes and three treatment lakes one- and two-years post treatment. In the treatment lakes, fluridone reduced Eurasian watermilfoil cover without reducing native plant cover, although the duration of Eurasian watermilfoil reduction varied among treatment lakes. (PDF has 11 pages.)
Resumo:
Experiments were conducted in a controlled-environmental growth chamber to evaluate the response of two strains of the invasive submersed plant Hydrilla verticillata (L.f.) Royle to fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl)phenyl]- 4(1H)-pyridinone). (PDF has 6 pages.)
Resumo:
Residue profiles and efficacy of Avast and Sonar, two slow release pellet formulations of fluridone {1-methyl-3-phenyl-5- [3-(trifluoromethyl)phenly]-4(1H)-pyridinone}, were compared in outdoor tanks. Hydrilla (Hydrilla verticillata (L.f.) Royle) and southern naiad (Najas guadalupensis (Sprengel) Magnus) were treated with a split application of 6, 12, 18 and 24 μg/l a.i. fluridone and the concentrations of both formulations compared over a 134-day period. Both pellet formulations exhibited very similar residues over time for each respective treatment, resulted in peak concentrations of fluridone 40 to 50 days after application, and effectively and similarly controlled southern naiad and hydrilla at all rates tested by 92 days after initial application. (PDF contains 3 pages.)
Resumo:
About 1,200 ha of hydrilla ( Hydrilla verticillata L.f. Royle) was eliminated in the Spring Creek embayment of Lake Seminole, Georgia, using a drip-delivery application of fluridone (1- methyl-3-phenyl-5-[3-(trifluoromethl) phenyl]-4(1H)-pyridinone) in 2000 and 2001. Two groups of 15 and 20 largemouth bass (Micropterus salmoides Lacepede) were implanted with 400-day radio tags in February 2000 and 2001 to determine changes in movement and behavior before and after hydrilla reduction.(PDF contains 8 pages.)
Resumo:
From 1997 to 2003, we examined the impacts of two aquatic herbicides, fluridone (Sonar; 1-methyl-3-phenyl-5-[3-(trifluromethl) phenyl]-4(1H)-pyridinone), and dipotassium salt of endothall (Aquathol K; 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid), used to control dense hydrilla (Hydrilla verticillata L. f. Royle), on population characteristics of juvenile largemouth bass (Micropterus salmoides Lacepede) in small coves (<10 ha) in Lake Seminole, Georgia. In addition, we estimated areal coverage and species composition of submersed aquatic vegetation (SAV) communities in each cove. Fish and plants were sampled in both control (hydrilla infested)and herbicide treated coves in November and March- April each year. Electrofishing catch-per-effort for both number and weight of age-0 and age-1 fish for the 1997 to 2002 year classes was either the same or higher (p < 0.05) in herbicide treated than in control coves. Age-0 fish were larger (p <0.05) in treated, than in control coves in November, but at age-1 in the following spring, fish were slightly longer (p <0.05) in the control coves. Higher age-0 catches were associated with greater percent reductions in numeric catch between age-0 and age-1 and reduced lengths of fish in November indicating density-dependent effects. Age-0 fish lengths were also negatively correlated to percent cover of both total and native SAV. Total or native SAV coverages were not associated with catch-per-unit effort for number and weight, but nearly all control and herbicide treated coves had total SAV coverage greater than 40%. Applications of both Sonar and Aquathol K reduced total SAV coverage and hydrilla, permitted the establishment of native SAVs, and had either neutral or positive impacts on young largemouth bass in small coves in Lake Seminole. (PDF contains 7 pages.)
Resumo:
Research has shown that aquatic weeds, particularly hydrilla ( Hydrilla verticillata , (L.F.) Royle), can be controlled with exposure of 8 to 12 weeks with concentrations of 10 to 15 ppb of fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl) phenyl]-4(1 H )- pyridinone) (Haller et al. 1990 and Fox et al. 1994). Fluridone label recommendations restrict the use of the treated waters for irrigation of turf or newly seeded crops and seed beds for 30 days following the last application of the herbicide. The objective of this research was to determine the effects of 10 weeks of irrigation with fluridone containing water on a common Florida residential turfgrass.
Resumo:
Hypoptopoma inexspectata is diagnosed and redescribed based on the examination of additional material and comparison with its congeners. This poorly known hypoptopomine species is distributed in the Paraguay and Paraná river draínages. Hypoptopoma inexspectata is diagnosable based on the autapomorphy biserial arrangement of anterior snout rostral margin odontodes, laterally extended to limit between second and third infraorbital plates, with dorsally directed dorsad series separated from ventrally directed ventrad series by a narrow odontode-free area, which at the level of first and second infraorbital plates is reduced to a dividing line of the series. The species can be further distinguished by the combination (1) low number of canal-bearing lateral plates (20-22, typically 21), (2) presence of a shield of prepectoral dermal plates, (3) arrangement of abdominal plates in one paired series of 3-5 plates, (4) shorter least interorbital distance 4856% head lengh, (5) larger horizontal eye diameter 17-20% head lengh, and (6) least orbit-nare distance 812% head lengh. Intraspecific variation skull dermal bones, neuracranium and suspensorium bones, dermal plates, adipose fin is reported. (PDF has 20 pages.)
Resumo:
Arrowtooth flounder (Atheresthes stomias) has the highest biomass of any groundfish species in the Gulf of Alaska, is a voracious predator of age 1 walleye pollock (Theragra chalcogramma), and is a major component in the diet of Steller sea lions (Eumetopias jubatus). Owing to its ecological importance in the Gulf of Alaska and the limited information available on its reproduction, interest has intensified in describing its spawning and early life history. A study was undertaken in late January–February 2001–2003 in the Gulf of Alaska to obtain information on adult spawning location, depth distribution, and sexual maturity, and to obtain fertilized eggs for laboratory studies. Adults were found 200–600 m deep east of Kodiak Island over the outer continental shelf and upper slope, and southwest along the shelf break to the Shumagin Islands. Most ripe females (oocytes extruded with light pressure) were found at 400 m and most ripe males (milt extruded with light pressure) were found at depths ≥450 m. Eggs were fertilized and incubated in the laboratory at 3.0°, 4.5°, and 6.0°C. Eggs were reared to hatching, but larvae did not survive long enough to complete yolk absorption and develop pigment. Eggs were staged according to morphological hallmarks and incubation data were used to produce a stage duration table and a regression model to estimate egg age based on water temperature and developmental stage. Arrowtooth flounder eggs (1.58–1.98 mm in diameter) were collected in ichthyoplankton surveys along the continental shelf edge, primarily at depths ≥400 m. Early-stage eggs were found in tows that sampled to depths of ≥450 m. Larvae, which hatch between 3.9 and 4.8 mm standard length, increased in abundance with depth. Observations on arrowtooth flounder eggs and early-stage larvae were used to complete the description of the published partial developmental series.(PDF file contains 34 pages.)
Resumo:
An examination is made of the organization and administration of fisheries training institutes in Nigeria, highlighting their inadequacies in achieving required goals. A systems approach to fisheries manpower training is described which is based on 4 principles: 1) wholeness; 2) systematization; 3) compatibility; and 4) optimization
Resumo:
The effects of some environmental factors on the fecundity of Tilapia species (Family Cichilidae) was carried out at the Kigera dam. Four Tilapia species caught were Tilapia zilli, Hemichromis fasciatus, Sarotherodon galilaeus and Oreochromis niloticus while the environmental factors considered were water temperature, Dissolved Oxygen, pH value, level of rainfall and rate of sunshine and range of time. 43 fish comprising of 25 male with (58.1%) and 18 females having (41.9%) were studied with 74.42% been sexually matured. Both high levels of rainfall and dissolved oxygen favoured fecundity. The spawning peak occurred in (July), environmental factors monitored indicated that dissolved oxygen ranges from 3.7 to 4.45mg/lit rainfall ranges from (34.90mm to 237.80mm) sunshine ranges from (5hrs-8hrs) and pH ranges from (7.35-7.45). The spawning of these species in their natural or hatchery condition is therefore best achieved during the peak of raining season