17 resultados para 278
em Aquatic Commons
Resumo:
ENGLISH: Return data for single-tagged fish and for double-tagged fish which had retained one or both tags were used to estimate the rates of shedding of dart tags from yellowfin tuna. The Type-1 shedding, which occurs immediately after release of the fish, is about 10 percent. The Type-2 shedding is assumed to be constant throughout the life of the fish after tagging; it occurs at an instantaneous rate of about 0.278 per year. SPANISH: Se emplearon los datos de retorno de peces marcados con una sola marca y de peces marcados con doble marca los cuales han retenido una o dos marcas para estimar las tasas de pérdida de las marcas de dardo de atunes aleta amarilla. El Tipo-l de pérdida, que ocurre inmediatamente después de haber liberado el pez, es aproximadamente del 10 por ciento. El Tipo-2 de pérdida se supone que sea constante durante la vida del pez después de marcado; ocurre en una tasa instantánea cerca de 0.278 por año. (PDF contains 24 pages.)
Resumo:
Since 1993, annual frame surveys have been conducted by the Nigerian-German Kainji Lake Fisheries Promotion Project to determine the distribution and number of fishing localities, fishing canoes and fishing gears around Kainji Lake, Nigeria. The total number of fishing localities has increased from 221 in 1993 to 286 in 1996. The fishing localities included 245 permanent fishing villages, 29 permanent fishing camps, 8 temporary fishing camps (with fishermen from Kainji Lake) and 4 temporary fishing camps (with fishermen from outside Kainji Lake area). There was an increase in the total number of fishing entrepreneurs, fishing assistants and fishing canoes over the years. A total number of 5,499 fishing entrepreneurs, 12,449 fishing assistants and 9,278 fishing canoes were recorded during the 1996 frame survey. From 1995 there was a decrease in the number of shoreline fisherfolk and a decrease in the number of transport canoes, the number of engines remained the same. During the 1996 survey, a total number of 18,655 gill nets, 1,560 drift nets, 753 beach seines, 5,548 cast nets, 7,400 longlines and 36,979 traps were recorded. The concentration of the gears (number per km shoreline) was highest in substrata 06 and 08. The total number of gill nets increased from 17,680 in 1995 to 18,655 in 1996. For the remaining 5 gear types a decrease in number was observed. Despite increasing numbers of gears on the lake, of concern is the decline recorded in all the fishing methods of the number of gears owned by individual entrepreneurs. This was most notable in the gill net and longline fisheries. These two fisheries have the lowest daily catch values and coupled with the problem of gear theft on the lake, ownership in future, may be expected to fall further. The number of larger fishing units also declined as did the number of gears new entrants enter the fishery with. The decline is particularly worrying for the beach seine fishery where diversification into other fishing methods would be beneficial in light of the present ban on seines. The group of not active fishing entrepreneurs (those who do not themselves participate in fishing activities) had the highest ownership of gears whilst the new entrants into the fishery had the lowest. There was evidence that these new entrants into the fishery were using cast nets which is worrying given the trend of using smaller mesh size of this gearSince 1993, annual frame surveys have been conducted by the Nigerian-German Kainji Lake Fisheries Promotion Project to determine the distribution and number of fishing localities, fishing canoes and fishing gears around Kainji Lake, Nigeria. The total number of fishing localities has increased from 221 in 1993 to 286 in 1996. The fishing localities included 245 permanent fishing villages, 29 permanent fishing camps, 8 temporary fishing camps (with fishermen from Kainji Lake) and 4 temporary fishing camps (with fishermen from outside Kainji Lake area). There was an increase in the total number of fishing entrepreneurs, fishing assistants and fishing canoes over the years. A total number of 5,499 fishing entrepreneurs, 12,449 fishing assistants and 9,278 fishing canoes were recorded during the 1996 frame survey. From 1995 there was a decrease in the number of shoreline fisherfolk and a decrease in the number of transport canoes, the number of engines remained the same. During the 1996 survey, a total number of 18,655 gill nets, 1,560 drift nets, 753 beach seines, 5,548 cast nets, 7,400 longlines and 36,979 traps were recorded. The concentration of the gears (number per km shoreline) was highest in substrata 06 and 08. The total number of gill nets increased from 17,680 in 1995 to 18,655 in 1996. For the remaining 5 gear types a decrease in number was observed. Despite increasing numbers of gears on the lake, of concern is the decline recorded in all the fishing methods of the number of gears owned by individual entrepreneurs. This was most notable in the gill net and longline fisheries. These two fisheries have the lowest daily catch values and coupled with the problem of gear theft on the lake, ownership in future, may be expected to fall further. The number of larger fishing units also declined as did the number of gears new entrants enter the fishery with. The decline is particularly worrying for the beach seine fishery where diversification into other fishing methods would be beneficial in light of the present ban on seines. The group of not active fishing entrepreneurs (those who do not themselves participate in fishing activities) had the highest ownership of gears whilst the new entrants into the fishery had the lowest. There was evidence that these new entrants into the fishery were using cast nets which is worrying given the trend of using smaller mesh size of this gear. (PDF contains 44 pages)
Resumo:
This brief article summarizes the ecological role of non-salmonid fishes in Scottish fresh waters. Most government-sponsored research has focused on the ecologically valuable salmonids in this area, yet non-salmonid species are widely distributed in Scotland and play an important ecological role in freshwater ecosystems. The fish fauna of Scotland differs from other parts of the British Isles by being more impoverished following the end of the last Ice Age, ca. 10 000 years ago.
Resumo:
Diurnal variation in trawl catches and its influence on energy efficiency of trawler operations are discussed in this paper, based on data on landings of a Japanese factory trawler which operated in the Indian waters during 1992-93. The factory vessel equipped for stern trawling had a length overall of 110 m, GT of 5460 and installed engine power of 5700 hp. Operations were conducted off west coast of India between 31 and 278 m depth contours, using a 80.4 m high opening bottom trawl with an adjusted vertical opening of 7.60.9 m. The catch data was grouped according to the median towing hour, by the time of the day. CPUE obtained was 3713.4 kg.h-1 for day time operations and 1536.6 kg.h-1 for night-time operations. Mean daily catches were 31367 kg.day-1 (SE: 2743) for day time operations and 9430 kg.day-1 (SE: 966) for night-time operations. Fuel consumption were 0.399 and 0.982 kg fuel.kg fish-1, respectively for day and night-time operations. Total catch and catch components such as threadfin bream, bulls eye, hairtails, trevelly, lizard fish showed significant improvement during day-time operations while swarming crabs showed a significant improvement in the night-time operations. The difference in catch rates between day and night could be attributed to diurnal variation in the spatial distribution and schooling behaviour of the catch categories, their differential behaviour in the vicinity of trawl systems under varying light levels of day and night and consequent effect on catching efficiency and size selectivity at different stages in the capture process. The results obtained in addition to its importance in the operational planning of trawling in order to realise objectives of maximising catch per unit effort and minimising fuel consumption per unit volume of fish caught, has added significance in the use of bottom trawl surveys in stock abundance estimates.
Resumo:
An attempt was made to calculate zooplankton production from weights and settled volumes and from the life cycle of some copepods. Biomass data were recorded during several years from 24 monthly cruises and from a coastal station sampled biweekly. Dry weight data were directly measured or were calculated from the settled volumes using a linear regression. They range, on an average, from 0.965 to 5.56 g m-2 day-1 from the shore line to the edge of the continental shelf. The mean life-span of the cohorts of 12 species of copepods is about 20 days. It is assumed that only 1 spawn occurs per generation-time and that the standing stock is turned-over during the life span of a cohort. The production ranges from 48.2 to 278 mg dry weight m-2 day-1 or 17.9 to 103 mg C m-2 day-1, according to the depth of the studied areas. One third of carnivorous production occurs among the copepods. So, it is assumed that the herbivorous and omnivorous production is about 2/3 of the total zooplanktonic production. This would be a more accurate estimate of secondary production. The standing stock of zooplankton and fishes are in the same order of magnitude; the ratio zooplanktonic production/total fishery is 0.8%.
Resumo:
T he relative value of pelagic habitat for three size classes of juvenile Pacific ocean perch (Sebastes alutus) was investigated by comparing their abundance and condition in two areas of the Aleutian Islands. Diet, zooplankton biomass, and water column temperatures were examined as potential factors affecting observed differences. Juvenile Pacific ocean perch abundance and condition, and zooplankton biomass varied significantly between areas, whereas juvenile Pacific ocean perch diet varied only by size class. Observed differences in fish condition may have been due to the quantity or quality of pelagic prey items consumed. For the delineation of essential demersal fish habitat, important ecological features of the pelagic habitat must therefore be considered.
Resumo:
Whole-gear efficiency (the proportion of fish passing between the otter doors of a bottom trawl that are subsequently captured) was estimated from data collected during experiments to measure the herding efficiency of bridles and doors, the capture efficiency of the net, and the length of the bridles sufficiently close to the seafloor to elicit a herding response. The experiments were focused on four species of flatfish: arrowtooth flounder (Atheresthes stomias), flathead sole (Hippoglossoides elassodon), rex sole (Glyptocephalus zachirus), and Dover sole (Microstomus pacificus). Whole-gear efficiency varied with fish length and reached maximum values between 40% and 50% for arrowtooth flounder, flathead sole, and rex sole. For Dover sole, however, whole-gear efficiency declined from a maximum of 33% over the length range sampled. Such efficiency estimates can be used to determine catchability, which, in turn, can be used to improve the accuracy of stock assessment models when the time series of a survey is short.
Resumo:
Age and growth estimates for salmon sharks (Lamna ditropis) in the eastern North Pacific were derived from 182 vertebral centra collected from sharks ranging in length from 62.2 to 213.4 cm pre-caudal length (PCL) and compared to previously published age and growth data for salmon sharks in the western North Pacific. Eastern North Pacific female and male salmon sharks were aged up to 20 and 17 years, respectively. Relative marginal increment (RMI) analysis showed that postnatal rings form annually between January and March. Von Bertalanffy growth parameters derived from vertebral length-at-age data are L∞ =207.4 cm PCL, k=0.17/yr, and t0=−2.3 years for females (n=166), and L∞ =182.8 cm PCL, k=0.23/yr , and t0=−1.9 years for males (n=16). Age at maturity was estimated to range from six to nine years for females (median pre-caudal length of 164.7 cm PCL) and from three to five years old for males (median precaudal length of 124.0 cm PCL). Weight-length relationships for females and males in the eastern North Pacific are W=8.2 × 10_05 × L2.759 –06 × L3.383 (r2 =0.99) and W=3.2 × 10 (r2 =0.99), respectively. Our results show that female and male salmon sharks in the eastern North Pacific possess a faster growth rate, reach sexual maturity earlier, and attain greater weight-at-length than their same-sex counterparts living in the western North Pacific.
Resumo:
With the southern New England lobster fishery in distress, lobster fishermen have focused more effort toward harvesting channeled whelk (Busycotypus canaliculatus). However, minimal research has been conducted on the life history and growth rates of channeled whelk. Melongenid whelks generally grow slowly and mature late in life, a characteristic that can make them vulnerable to overfishing as fishing pressure increases. We sampled channeled whelk from Buzzards Bay, Massachusetts, in August 2010 and in July 2011, studied their gonad development by histology, and aged them by examining opercula. Males had a slower growth rate and a lower maximum size than females. Male whelk reached 50% maturity (SM50) at 115.5 mm shell length (SL) and at the age of 6.9 years. Female whelk reached SM50 at 155.3 mm SL and at the age of 8.6 years. With a minimum size limit of 69.9 mm (2.75 in) in shell width, males entered the fishery at 7.5 years, a few months after SM50, but females entered the fishery at 6.3 years, approximately 2 years before SM50. Increased fishing pressure combined with slow growth rates and the inability to reproduce before being harvested can easily constrain the long-term viability of the channeled whelk fishery in Massachusetts.
Resumo:
Benthic food webs often derive a significant fraction of their nutrient inputs from phytoplankton in the overlying waters. If the phytoplankton include harmful algal species like Pseudo-nitzschia australis, a diatom capable of producing the neurotoxin domoic acid (DA), the benthic food web can become a depository for phycotoxins. We tested the general hypothesis that DA contaminates benthic organisms during local blooms of P. australis, a widespread toxin producer along the US west coast. To test for trophic transfer and uptake of DA into the benthic food web, we sampled 8 benthic species comprising 4 feeding groups: filter feeders (Emerita analoga and Urechis caupo); a predator (Citharichthys sordidus); scavengers (Nassarius fossatus and Pagurus samuelis) and deposit feeders (Neotrypaea californiensis, Dendraster excentricus and Olivella biplicata). Sampling occurred before, during and after blooms of P. australis in Monterey Bay, CA, USA during 2000 and 2001. DA was detected in all 8 species, with contamination persisting over variable time scales. Maximum DA levels in N. fossatus (674 ppm), E. analoga (278 ppm), C. sordidus (515 ppm), N. californiensis (145 ppm), P. samuelis (56 ppm), D. excentricus (15 ppm) and O. biplicata (3 ppm) coincided with P. australis blooms, while DA levels in U. caupo remained above 200 ppm (max. = 751 ppm) throughout the study period. DA in 6 species exceeded levels thought to be safe for higher level consumers (i.e. ≥20 ppm) and thus is likely to have deleterious effects on marine birds, sea lions and the endangered California sea otter, known to prey upon these benthic species.
Resumo:
Queen conch (Strombus gigas) stocks in the Florida Keys once supported commercial and recreational fisheries, but overharvesting has decimated this once abundant snail. Despite a ban on harvesting this species since 1985, the local conch population has not recovered. In addition, previous work has reported that conch located in nearshore Keys waters are incapable of spawning because of poor gonadal condition, although reproduction does occur offshore. Queen conch in other areas undergo ontogenetic migrations from shallow, nearshore sites to offshore habitats, but conch in the Florida Keys are prevented from doing so by Hawk Channel. The present study was initiated to determine the potential of translocating nonspawning nearshore conch to offshore sites in order to augment the spawning stock. We translocated adult conch from two nearshore sites to two offshore sites. Histological examinations at the initiation of this study confirmed that nearshore conch were incapable of reproduction, whereas offshore conch had normal gonads and thus were able to reproduce. The gonads of nearshore females were in worse condition than those of nearshore males. However, the gonadal condition of the translocated nearshore conch improved, and these animals began spawning after three months offshore. This finding suggests that some component of the nearshore environment (e.g., pollutants, temperature extremes, poor food or habitat quality) disrupts reproduction in conch, but that removal of nearshore animals to suitable offshore habitat can restore reproductive viability. These results indicate that translocations are preferable to releasing hatchery-reared juveniles because they are more cost-effective, result in a more rapid increase in reproductive output, and maintain the genetic integrity of the wild stock. Therefore, translocating nearshore conch to offshore spawning aggregations may be the key to expediting the recovery of queen conch stocks in the Florida Keys.
Resumo:
Growth parameters were estimated for porbeagle shark (Lamna nasus) in the northwest Atlantic Ocean on the basis of vertebral annuli. A total of 578 vertebrae was analyzed. Annuli were validated up to an age of 11 years by using vertebrae from recaptured oxytetracycline-injected and known-age sharks. Males and females grew at similar rates until the size of male sexual maturity, after which the relative growth of the males declined. The growth rate of the females declined in a similar manner at the onset of maturity. Growth curves were consistent with those derived from tag-recapture analyses (GROTAG) of 76 recaptured fish and those based on length-frequency methods with measurements from 13,589 individuals. Von Bertalanffy growth curve parameters (combined sexes) were L∞ = 289.4 cm fork length, K = 0.07 and t0 = –6.06. Maximum age, based on vertebral band pair counts, was 25 and 24 years for males and females, respectively. Longevity calculations, however, indicated a maximum age of 45 to 46 years in an unfished population.