5 resultados para 1H jatorrizko hizkuntzak
em Aquatic Commons
Resumo:
Experiments were conducted in a controlled-environmental growth chamber to evaluate the response of two strains of the invasive submersed plant Hydrilla verticillata (L.f.) Royle to fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl)phenyl]- 4(1H)-pyridinone). (PDF has 6 pages.)
Resumo:
Residue profiles and efficacy of Avast and Sonar, two slow release pellet formulations of fluridone {1-methyl-3-phenyl-5- [3-(trifluoromethyl)phenly]-4(1H)-pyridinone}, were compared in outdoor tanks. Hydrilla (Hydrilla verticillata (L.f.) Royle) and southern naiad (Najas guadalupensis (Sprengel) Magnus) were treated with a split application of 6, 12, 18 and 24 μg/l a.i. fluridone and the concentrations of both formulations compared over a 134-day period. Both pellet formulations exhibited very similar residues over time for each respective treatment, resulted in peak concentrations of fluridone 40 to 50 days after application, and effectively and similarly controlled southern naiad and hydrilla at all rates tested by 92 days after initial application. (PDF contains 3 pages.)
Resumo:
About 1,200 ha of hydrilla ( Hydrilla verticillata L.f. Royle) was eliminated in the Spring Creek embayment of Lake Seminole, Georgia, using a drip-delivery application of fluridone (1- methyl-3-phenyl-5-[3-(trifluoromethl) phenyl]-4(1H)-pyridinone) in 2000 and 2001. Two groups of 15 and 20 largemouth bass (Micropterus salmoides Lacepede) were implanted with 400-day radio tags in February 2000 and 2001 to determine changes in movement and behavior before and after hydrilla reduction.(PDF contains 8 pages.)
Resumo:
From 1997 to 2003, we examined the impacts of two aquatic herbicides, fluridone (Sonar; 1-methyl-3-phenyl-5-[3-(trifluromethl) phenyl]-4(1H)-pyridinone), and dipotassium salt of endothall (Aquathol K; 7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid), used to control dense hydrilla (Hydrilla verticillata L. f. Royle), on population characteristics of juvenile largemouth bass (Micropterus salmoides Lacepede) in small coves (<10 ha) in Lake Seminole, Georgia. In addition, we estimated areal coverage and species composition of submersed aquatic vegetation (SAV) communities in each cove. Fish and plants were sampled in both control (hydrilla infested)and herbicide treated coves in November and March- April each year. Electrofishing catch-per-effort for both number and weight of age-0 and age-1 fish for the 1997 to 2002 year classes was either the same or higher (p < 0.05) in herbicide treated than in control coves. Age-0 fish were larger (p <0.05) in treated, than in control coves in November, but at age-1 in the following spring, fish were slightly longer (p <0.05) in the control coves. Higher age-0 catches were associated with greater percent reductions in numeric catch between age-0 and age-1 and reduced lengths of fish in November indicating density-dependent effects. Age-0 fish lengths were also negatively correlated to percent cover of both total and native SAV. Total or native SAV coverages were not associated with catch-per-unit effort for number and weight, but nearly all control and herbicide treated coves had total SAV coverage greater than 40%. Applications of both Sonar and Aquathol K reduced total SAV coverage and hydrilla, permitted the establishment of native SAVs, and had either neutral or positive impacts on young largemouth bass in small coves in Lake Seminole. (PDF contains 7 pages.)
Resumo:
In previous papers the sensibility of pelagic and demersal fishes caught at depth of up to 80 m was reported. This paper deals with the sensitiveness of flatfishes, gadids, and redfish caught at depth between 260 and 450 m and with trawling times between 1 and 6 h. The sensitiveness of the fishes was tested according to the method described in previous publications (Münkner et. al. 1998) after 10 min keeping in running sea water and after 1h bulk storage respectively. The sensitiveness of the fishes increased from cod to saithe to haddock. Surprisingly American plaice and Greenland halibut turned out to be very sensitive, far more sensitive than plaice and dab caught at lower depths in the North Sea. This was indicated by the high amount of animals showing rigor already after a trawling time of 2 hand 10 min of keeping in seawater. After 1 h of bulk storage and increasing trawling time sensitiveness of all fishes decreased, as expected, significantly. Besides mechanical encroachments the main problem for the fishes caught at greater depths was the gas supersaturation in the blood and tissue causing blockage of the gill capillary vessels, exophthalmus, visible gas bubbles in the skin and eyes, and in some cases protusion of the intestines through the snout due to rapid dilatation of the swimbladder.